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Chapter 1

The Basics

1.1 The Field of Complex Numbers

The two dimensional R-vector space R2 of ordered pairs z = (x, y) of real numbers with multiplication
(x1, y1)(x2, y2) := (x1x2−y1y2, x1y2+x2y1) is a commutative field denoted by C. We identify a real number
x with the complex number (x, 0). Via this identification C becomes a field extension of R with the unit
element 1 := (1, 0) ∈ C. We further define i := (0, 1) ∈ C. Evidently, we have that i2 = (−1, 0) = −1. The
number i is often called the imaginary unit of C although nowadays it is hard to see anything imaginary
in the plane point (0, 1).1 Every z ∈ C admits a unique representation

z = (x, y) = x(1, 0) + (0, 1)y = x + iy,

where x is called the real part of z, x = Re(z), and y the imaginary part of z, y = Im(z). The number
z = x − iy is the conjugate of z and

|z| :=
√

x2 + y2 =
√

zz

is called the absolute value or norm. The multiplicative inverse of 0 6= z ∈ C is given by

z−1 =
1
z

=
z

|z|2
.

1The situation was different in 1545 when Girolamo Cardano introduced complex numbers in his Ars Magna only to
dismiss them immediately as subtle as they are useless. In 1702 Leibnitz described the square root of −1 as that amphibian
between existence and nonexistence and in 1770 Euler was still sufficiently confused to make mistakes like

√
−2

√
−3 =

√
6.

The first answer to the question ”What is a complex number” that satisfied human senses was given in the late eighteenth
century by Gauss. Since then we have the rock-solid geometric interpretation of a complex number as a point in the plane.
With Gauss, the algebraically mysterious imaginary unit i =

√
−1 became the geometrically obvious, boring point (0, 1).

Many teachers introduce complex numbers with the convenient half-truth that they are useful since they allow to solve
all quadratic equations. If this were their main purpose of existence, they would truly be subtle as they were useless. The
first one to see the true usefullness of the complex numbers was Rafael Bombelli in his L’Algebra from 1572. Investigating

Cardano’s formula, which gives a solution of the cubic equation x3−3px−2q = 0 by x0 =
3
√

q +
√

q2 − p3+
3
√

q −
√

q2 − p3,

he noticed that the solution of x3 − 15x − 4 = 0 is given by x0 = 3
√

2 + 11
√
−1 + 3

√
2 − 11

√
−1. It was Bombelli’s famous

wild thought that led him to recognize that x0 = 4. This was the first manifestation of one of the truly powerful properties
of complex numbers: real solutions of real problems can be determined by computations in the complex domain. See also:
T. Needham, Visual Complex Analysis [1997] and J. Stillwell, Mathematics and Its History [1989].
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The set of 2 × 2-matrices
{(

x −y
y x

)
; x, y ∈ R

}
with the usual matrix addition and multiplication is

a field isomorphic to C. A mapping T : C → C is C-linear iff

Tz = µz for some µ ∈ C and all z ∈ C.

A mapping T : R2 → R2 is R-linear iff

T '
(

a b
c d

)
for some a, b, c, d ∈ R.

A R-linear mapping T : R2 → R2 is C-linear iff

T '
(

a −b
b a

)
for some a, b ∈ R.

The function d : C × C → R+, d(z, w) := |z − w| defines a metric on C. Since C is R2 with the extra
algebraic structure of multiplication, many geometric and topological concepts can be translated from
R2 into complex notation. In particular, C is a complete metric space in which the Heine-Borel theorem
holds (compact ⇐⇒ closed and bounded). Let M ⊂ C and I = [a, b] ⊂ R. Every continuous function
γ : I → M is called a path in M . The set M is called path-connected if every two points in M are in
the image of a path in M and M is called connected if for any two disjoint open sets U, V ⊂ C with
M ⊂ U ∪ V one has either M ⊂ U or M ⊂ V . Any open and connected subset D of the complex plane
is called a region.

Proposition 1.1.1. Any two points of a region D can be connected by a smooth path.

Proof. Fix z0 ∈ D and consider the sets A = {z ∈ D : z can be connected to z0 by a smooth path} and
B = {z ∈ D : z can not be connected to z0 by a smooth path}. Then A, B are open.2 Clearly, D ⊂ A∪B
and A∩B = ∅. Since D is connected it follows that either D ⊂ A or D ⊂ B. Since z0 ∈ D ∩A we obtain
that D ⊂ A.

Problems. (0) Prepare a 20 minute lecture on ”Complex Numbers” suitable for a College Algebra (Math
1021) course.

(1) Show that every path-connected set is connected. Find a connected set which is not path-connected.

(2) Towards a Functional Calculus. Let A = 1√
5

(
1 2
−2 1

)
. Compute An (n ∈ N0) using a) the Jordan

normal form of A, b) the fact that A is in a field isomorphic to C, and try to do it without any use of
complex numbers. For which functions f other than f(z) = zn can one define f(A)? Compute etA and
find the solution of x′(t) = Ax(t) with initial value x(0) = (1,−1). Let A be an arbitrary 2x2-matrix and
let σ(A) ⊂ C denote the set of eigenvalues of A. Show that the asymptotic behavior of the solutions of
x′(t) = Ax(t) can be characterized in terms of the so-called spectrum σ(A).

(3) Towards the Mandelbrot set. Let f(z) = z2 + c for some c ∈ C and an := fn(0) = (f ◦ f ◦ · · · ◦ f)(0).
Compute and draw the set of all c ∈ C for which the sequence an converges. Draw (with the help of a
computer) the set of all c ∈ C for which the sequence an stays bounded (Mandelbrot Set). What is a
Julia Set? What is a Fractal? Give examples and brief, informal descriptions.

2Why?
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1.2 Analytic Functions

It had taken more than two and half centuries for mathematicians to come to terms with complex numbers,
but the development of the powerful mathematical theory of how to do calculus with functions of such
numbers (what we call now complex analysis) was astonishingly rapid. Most of the fundamental results
were obtained by Cauchy, Dirichlet, Riemann, Weierstrass, and others between 1814 and 1873 - a span
of sixty years that changed the face of mathematics forever. Before going into some of the details, let us
try a preliminary answer to the question ”What is complex analysis?”. It is clear that any short answer
must be incomplete and highly subjective. In these lecture notes we take the position that the core of
complex analysis is the study of power series

∑∞
n=0 an(z − z0)n and of the characteristic properties of

those functions f which can be represented locally as such a power series.3 As we will see below, one
characteristic property of such functions is analyticity.

Definition 1.2.1. Let D ⊂ C be open, f : D → C, z = x + iy, f = u + iv.

a) f is complex differentiable in a ∈ D if limz→a
f(z)−f(a)

z−a exists for each sequence z in D \ {a}
converging to a.

b) f is analytic (holomorphic, regular) on D if it is complex differentiable for all a ∈ D. If f is analytic
an C, then it is called an entire function.

c) If f is complex differentiable in a ∈ D, then f ′(a) = f (1)(a) = df
dz (a) = limz→a

f(z)−f(a)
z−a .

Example 1.2.2. (a) A function f(z) = u(x, y)+iv(x, y) is continuous if its real part u and its imaginary part
v is continuous at (x0.y0).4 It follows that the monomials f(z) = zn (n ∈ N0) are complex differentiable
and f ′(a) = limz→a

zn−an

z−a = limz→a zn−1 + azn−2 + · · · + an−2z + an−1 = nan−1. Thus, any complex
polynomial

∑N
n=0 anzn is an entire function with derivative

∑N
n=1 nanzn−1.

(b) A convergent power series
∑∞

n=0 anzn represents an analytic function inside its circle of convergence.
To see this let f(z) :=

∑∞
n=0 anzn be convergent for |z| < R. Then g(z) :=

∑∞
n=1 nanzn−1 is convergent

for |z| < R5. Let |z| < r < R and |h| < r − |z|. Then there exists K > 0 such that |anrn| ≤ K for all
n ∈ N0. It follows from

f(z + h) − f(z)
h

− g(z) =
∞∑

n=0

an

(
(z + h)n − zn

h
− nzn−1

)

and
∣∣∣ (z+h)n−zn

h − nzn−1
∣∣∣ = |

∑n−2
i=0 ( n

i
)zihn−i−1| ≤

∑n−2
i=0 ( n

i
)|z|i|h|n−i−1 = (|z|+|h|)n−|z|n

|h| − n|z|n−1

that

|f(z + h) − f(z)
h

− g(z)| ≤ K

∞∑

n=0

1
rn

(
(|z| + |h|)n − |z|n

|h|
− n|z|n−1

)

= K

{
1
|h|

(
1

1 − |z|+|h|
r

− 1

1 − |z|
r

)
− 1

r

1

(1 − |z|
r )2

}

=
Kr|h|

(r − |z| − |h|)(r − |z|)2
,

3In a power series
∑∞

n=0 an(z − z0)n the variable z is always a complex number, and the coefficients an are either
complex numbers (classical complex analysis) or elements of an arbitrary Banach space X (modern complex analysis).

4Why?
5For a proof, see Section 2.7
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which tends to zero with h. Hence, f ′(z) = g(z) if |z| < R.

It is one of the main results of complex analysis that all analytic functions f defined on a region Ω ⊂ C
can be represented as a convergent power series

∑∞
n=0 an(z − z0)n, where z0 is the center of the largest

disc S ⊂ Ω, and z ∈ S. Moreover, as we will see in the section on asymptotic complex analysis, not only
the convergent power series but all formal power series can be uniquely represented by equivalence classes
of analytic functions.

(c) The function f(z) = z is continuous, infinitely often real differentiable, but nowhere complex differ-
entiable since f(z)−f(a)

z−a = 1 for z = a + 1
n and f(z)−f(a)

z−a = −1 for z = a + i
n .

Lemma 1.2.3. Let a ∈ D ⊂ C, D open, and f : D → C. Tfae:

(i) f ′(a) exists.

(ii) There exists a function ∆ : D → C which is continuous in a and satisfies f(z) = f(a) + ∆(z)(z − a).

Proof. Obvious. Also, notice that the differentiability of f in a implies the continuity of f in a.

Remark 1.2.4. The usual of differentiation from calculus can be used when differentiating holomorphic
functions. The proofs extend without any change beyond replacing the real variables x, y, .... by complex
variables z, v, ...... As an example we discuss the chain rule:

Let D, U ⊂ C be open, f : D → U and h : U → C. If f is complex differentiable in
a ∈ D and h is complex differentiable in f(a), then h ◦ f is complex differentiable in a and
(h ◦ f)′(a) = h′(f(a))f ′(a).

Proof. Let F := h ◦ f , f(z) = f(a) + ∆1(z)(z − a), b = f(a), and h(w) = h(b) + ∆2(w)(w − b). Then
F (z) = h(f(z)) = h(b)+(∆2◦f)(z)(f(z)−b) = h(f(a))+[(∆2◦f)(z)](∆1(z))(z−a) = F (a)+∆3(z)(z−a),
where ∆3(z) = [(∆2 ◦f)(z)]∆1(z). Thus, F is complex differentiable in a and F ′(a) = (∆2 ◦f)(a)∆1(a) =
h′(f(a))f ′(a).

1.3 The Complex Exponential

In this section we introduce the complex exponential function and list some of its properties. We need
the following crucial lemma, whose proof from advanced calculus carries over to complex series.

Lemma 1.3.1 (Cauchy Product of Series). Let
∑∞

n=0 an and
∑∞

n=0 bn be absolute convergent series. Then
(
∑∞

n=0 an) (
∑∞

n=0 bn) =
∑∞

n=0 cn, where cn =
∑n

i=0 aibn−i and
∑∞

n=0 cn is absolute convergent.

The complex exponential

exp(z) :=
∞∑

i=0

1
n!

zn

has the following properties:

(a) The sum
∑∞

n=0
1
n!z

n converges absolutely and | exp(z)| ≤ e|z| for all z ∈ C.

(b) The function exp maps addition into multiplication; i.e., exp(z) exp(w) = exp(z + w) for all z, w ∈ C.
This can be seen by using the Cauchy product for series: exp(z) exp(w) =

(∑∞
n=0

1
n!z

n
) (∑∞

i=0
1
i!w

i
)

=∑∞
n=0

1
n!

∑n
p=0

n!
p!(n−p)!z

pwn−p =
∑∞

n=0
1
n! (z + w)n = exp(z + w).
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(c) The function exp is entire and exp′ = exp. To see this let a ∈ C. Then exp(z)−exp(a)
z−a = exp(a) exp(z−a)−1

z−a

= exp(a)
∑∞

n=1
1
n! (z − a)n−1 = exp(a) + exp(a) (z − a)

∑∞
n=2

1
n!(z − a)n−2 → exp(a) as z → a since∑∞

n=2
1
n!(z − a)n−2 is bounded if |z − a| < 1.

(d) It follows from the Taylor expansion of the real exponential function e that exp(x) = ex for all x ∈ R.
Therefore, we write often ez instead of exp(z). Moreover, for all y ∈ R, we have the Euler formula

eiy = cos(y) + isin(y)

since, by using the Taylor expansions of cos and sin, eiy =
∑∞

n=0
1
n! i

nyn =
∑∞

n=0
1

(2n)! (−1)ny2n +
i
∑∞

n=0
1

(2n+1)! (−1)ny2n+1 = cos(y) + i sin(y). Therefore, for z = (x, y) ∈ C,

ez = exeiy = ex(cos(x) + i sin(x)).

(e) Let y ∈ R. Then e±iy = cos(y) ± i sin(y). It follows that cos(y) = 1
2 (eiy + e−iy) and sin(y) =

1
2i (e

iy − e−iy). Therefore, if we define

cos(z) :=
1
2
(eiz + e−iz) and sin(z) :=

1
2i

(eiz − e−iz),

then we obtain the famous Euler Formula

eiz = cos(z) + i sin(z) (z ∈ C).

(f) It is often convenient to write complex numbers in their exponential or polar coordinate representation

z = |z|ei arg(z) = r(cos(θ) + i sin(θ),

where z = (x, y), θ = arg(z) ∈ (−π, π] is an angle such that tan(θ) = y
x , and r = |z| =

√
x2 + y2. In

particular, if z = r(cos(θ) + i sin(θ) and n is a positive integer, then zn = rn(cos(nθ) + i sin(nθ) and the
n n-th roots of z are given by zk = n

√
r(cos( θ

n + 2πk
n ) + i sin(cos( θ

n + 2πk
n ) , k = 0, 1, · · · , n − 1.

Problems. (1) Show that for all z ∈ C such that sin( 1
2z) 6= 0 and for all n ∈ N the trigonometric

summation formula 1
2 + cos(z) + cos(2z) + · · · + cos(nz) = 1

sin( 1
2 z)

sin(n + 1
2z) holds.

(2) Show that exp is periodic, exp(C) = C \ {0}, and that cos and sin assume every value in C countably
often.

1.4 The Cauchy-Riemann Theorem

Recall that a function f = u + iv : D → R2 is called differentiable (in the real sense) in z0 ∈ D ⊂ R2 if
there exists a R-linear map A : R2 → R2 such that 1

|z−z0| (f(z) − f(z0) − A(z − z0)) → 0 as z → z0. If f

is differentiable at z0, then6

f ′(z0) := A =
(

ux(z0) uy(z0)
vx(z0) vy(z0)

)
.

Moreover, if the partial derivatives ux, uy, vx, vy exist and are continuous in z0, then f is differentiable
at z0.

6Why?
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Theorem 1.4.1 (Cauchy-Riemann). Let D ⊂ C be open, z0 ∈ D, and f : D → C, f = u + iv. Tfae:

(i) f is complex differentiable in z0.

(ii) f is differentiable in z0 and ux = vy, uy = −vx at z0.

In this case, f ′(z0) = δf
δx (z0) := ux(z0) + ivx(z0) = 1

i
δf
δy (z0) := −iuy(z0) + vy(z0).

Proof. Let µ = a+ ib ' A, where A =
(

a b
−b a

)
, and z = x+ iy. Then µz = A(z). Thus, f is complex

differentiable in z0 ⇐⇒ limz→z0
f(z)−f(z0)

z−z0
= µ := f ′(z0) ⇐⇒ limz→z0

1
z−z0

(f(z) − f(z0) − µ(z − z0)) =
0 ⇐⇒ limz→z0

1
z−z0

(f(z) − f(z0) − A(z − z0)) = 0 ⇐⇒ f is differentiable in z0 and f ′(z0) = A =(
a b
−b a

)
=
(

ux(z0) uy(z0)
vx(z0) vy(z0)

)
.

Example 1.4.2. (a) Let z = x + iy and consider f(z) = z = (x,−y). Then f is differentiable and

f ′(x, y) =
(

1 0
0 −1

)
for all x, y. Thus, f is nowhere complex differentiable.

(b) Consider f(z) = |z|2 = (x2 + y2, 0). Then f is differentiable and f ′(x, y) =
(

2x 2y
0 0

)
for all x, y.

Thus, f is complex differentiable in z0 iff z0 = 0.

Next we will collect some further properties of analytic functions without going into greater detail. A
twice continuously differentiable function u : D → R on a region D ⊂ R2 is called harmonic if u is in the
kernel of the Laplace operator ∆; i.e., ∆u = uxx + uyy = 0 on D. We will show in Section ??? below that
any analytic function f = u+ iv : D → C is infinitely often differentiable. Thus, uxx = vyx = vxy = −uyy

and vxx = −uyx = −uxy = −vyy. This yields the following statement.7

The real- and imaginary parts of an analytic function are harmonic.

Assume that f = u+iv is analytic on a region D and that the equations u(x, y) = c1 and v(x, y) = c2 define
smooth curves in D for some c1, c2 ∈ R; i.e., there exist smooth functions γ, σ : R → D, γ(t) = (x(t), y(t)),
σ(t) = (x̃(t), ỹ(t)) such that u(γ(t)) = c1 and v(σ(t)) = c2 for all t. Then (ux, uy) · (x′, y′) = uxx′ +uyy

′ =
d
dtu(x, y) = 0 and (ux̃, uỹ) · (x̃′, ỹ′) = ux̃x̃′ + uỹỹ

′ = d
dtu(x̃, ỹ) = 0 for all t ≥ 0. Thus, for all t,

(ux, uy) ⊥ (x′, y′) and (ux̃, uỹ) ⊥ (x̃′, ỹ′).

Furthermore, since 0 = uxvx − vxux = uxvx + uyvy = (ux, uy) · (vx, vy), it follows that

(ux, uy) ⊥ (vx, vy)

for all z ∈ C. Assume that the two curves γ and σ intersect; i.e., z0 = (x0, y0) := γ(t1) = σ(t2) for some
t1, t2 ∈ R. If f ′(z0) 6= 0, then γ′(t1) ⊥ σ′(t2), since (ux(z0), uy(z0)) ⊥ (vx(z0), vy(z0)). This proves the
following.

If f = u+iv is analytic and z0 = (x0, y0) is point common to two particular curves u(x, y) = c1

and v(x, y) = c2 and if f ′(z0) 6= 0, then the lines tangent to those curves at (x0, y0) are
perpendicular.

7It will be shown later that any harmonic function u on a simply connected region D is the real part of an analytic
function.
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Let f be complex differentiable at z0 with f ′(z0) = µ 6= 0. Then f(z0 + h) ≈ f(z0) + µh if h ≈ 0. Thus,
locally at z0, f is approximately a rotation by arg(µ) with a magnification by |µ|. It is therefore not
surprising that analytic functions with f ′ 6= 0 are conformal; i.e.:

Analytic functions are locally angle- and orientation preserving.

Since we will not discuss this (very important) concept any further in this class, we refer to R. Remmert’s
Theory of Complex Functions [1991] for further reading.

Recall from your advanced calculus course that a continuously differentiable function f : D → R2 has
a differentiable inverse f−1 with (f−1)′(f(z)) = (f ′(z))−1 in some neighborhood of a point z0 where
det f ′(z0) 6= 0 (Inverse Function Theorem). If f = u + iv is also assumed to be analytic, then the
Jacobian matrices f ′(z) can be represented by nonzero complex numbers in a neighborhood of z0. It
follows that the Jacobian matrices (f−1)′(w), w = f(z), can also be identified with complex numbers.
Thus, the partial derivatives of (f−1)′ satisfy the Cauchy-Riemann equations in a neighborhood of f(z0)
and we obtain the following result.

Corollary 1.4.3. Let f be analytic in a region D (with f ′ continuous).8 If f ′(z0) 6= 0 for some z0 ∈ D,
then there exists a neighborhood U of z0 and a neighborhood V of w0 = f(z0) such that f : U → V is
one-to-one, onto, f−1 is analytic, and (f−1)′(w) = 1

f ′(z) for w = f(z) ∈ V .

Example 1.4.4 (The Complex Logarithm). Let U be a horizontal strip {(x, y) : y0 < y < y0 + 2π)} and
f(z) = ez = ex(cos(y), sin(y)). Then f is analytic, f ′ is continuous, and f ′(z) 6= 0 for all z ∈ U . Let V
be the sliced plane {z 6= 0 : arg(z) 6= y0 mod 2Π}. Then f : U → V is one-to-one and onto. By the
corollary above, g := f−1 is locally analytic and satisfies g′(w) = (f−1)′(w) = 1

f ′(z) = 1
f(z) = 1

w for
w = f(z) ∈ V . Since g′(w) = 1

w for all w ∈ V we call g the branch of the complex logarithm on V and
write logV (w) := g(w).

Problems. (1) If f = u + iv is analytic, then f(z) = 2u( z+z0
2 , z−z0

2i ) − f(z0) = 2iv( z+z0
2 , z−z0

2i ) + f(z0)

(2) Study the Cauchy-Riemann equations and the complex differentiability of f(z) = z5

|z|4 .

1.5 Contour Integrals

Let f be a continuous function on D ⊂ C and let γ : [a, b] → D be continuously differentiable. Then the
integral of f along γ is defined as

∫

γ

f(z) dz :=
∫ b

a

f(γ(t))γ′(t) dt.

Let a = a0 < a1 · · · < an = b be a partition of the interval [a, b]. If γ : [a, b] → D is continuously
differentiable on the subintervals [ak−1, ak], 1 ≤ k ≤ n, then γ is called piecewise smooth and

∫

γ

f(z) dz :=
n∑

k=1

∫ ak

ak−1

f(γ(t))γ′(t) dt.

8We will see below that any analytic function is infinitely often continuously differentiable. Thus, the continuity assump-
tion is always fulfilled.
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It is obvious that contour integration is linear (i.e.,
∫

γ
cf + g = c

∫
γ

f +
∫

γ
g for all analytic functions

f, g : D → C and all c ∈ C) and that

|
∫

γ

f(z) dz| ≤ ML(γ),

where L(γ) :=
∫ b

a |γ′(t)| dt denotes the arclength of γ and M = maxz∈γ |f(z)|.

Example 1.5.1. Let γ : [0, 2π] → C be given by γ(t) = eit and f(z) = zn for some n ∈ Z. Then
∫

γ

zndz = i

∫ 2π

0

e(n+1)it dt =
{

2πi n = −1
0 else

In particular,
1

2πi

∫

γ

1
z

dz = 1.

A function γ̃ : [ã, b̃] → C is called a reparametrization of a piecewise smooth curve γ if there exists
a strictly monotone C1-function α that maps [a, b] onto [ã, b̃] such that γ(t) = γ̃(α(t))) for all t ∈ [a, b].

Lemma 1.5.2.
∫

γ
f(z) dz = ε

∫
γ̃

f(z) dz, where ε = 1 if α′ > 0 and else ε = −1.

Proof.
∫

γ f(z) dz =
∫ b

a f(γ(t))γ′(t) dt =
∫ b

a f(γ̃(α(t))γ̃′(α(t))α′(t) dt =
∫ α(b)

α(a) f(γ̃(s))γ̃′(s) ds =

ε
∫ b̃

ã f(γ̃(s))γ̃′(s) ds = ε
∫

γ̃ f(z) dz.

Let K ⊂ C be compact. A set Γ ⊂ K is called a smooth boundary of K if there exists a bijective
C1-map γ : [a, b] → Γ such that γ′(t) 6= 0 for all t ∈ [a, b] and for all t ∈ [a, b] there exists ε > 0 such that
for all s ∈ [−ε, ε] one has

γ(t) + isγ′(t) ∈ K ⇐⇒ s ≥ 0.

If K is a compact set with a smooth boundary Γ = γ([a, b], then we define
∫

δK

f(z) dz :=
∫

Γ

f(z) dz :=
∫

γ

f(z) dz,

where the definition is independent of the parametrization γ. If a compact set K has a piecewise smooth
boundary δK = ∪n

k=1Γk, where Γk is smooth and Γi ∩ Γj is finite, then

∫

δK

f(z) dz :=
n∑

k=1

∫

Γk

f(z) dz.

Example 1.5.3.
(a)

(b)



Chapter 2

The Works

2.1 Antiderivatives

Definition 2.1.1. Let D ⊂ C a region and let f : D → C be continuous. The function f is called Cauchy
integrable if ∫

γ1

f(z) dz =
∫

γ2

f(z) dz

for all piecewise smooth curves γi : [a, b] → D with the same starting- and endpoints.

One should notice that the notion of Cauchy integrability has little to do with the usual definitions
of Riemann or Lebesgue integrability. If f is continuous, then the contour integral along γ exists. Thus,
the important element in the definition of Cauchy integrability is not the existence of the integral, but
the fact that the value of the contour integral depends only on the starting- and endpoint of the path γ
(path-idependence, see statement (iii) below).

Theorem 2.1.2. Let f : D → C be continuous. Tfae.

(i) f is Cauchy integrable.

(ii)
∫

γ f(z) dz = 0 for all piecewise smooth, closed curves in D.

(iii) There exists a function F : D → C such that
∫

γ f(z) dz = F (γ(b))−F (γ(a)) for all piecewise smooth
curves γ : [a, b] → D.

(iv) f has an antiderivative; i.e., there exists an analytic function F : D → C with F ′ = f on D.

Moreover, F : D → C is an antiderivative of f if and only if
∫

γ f(z) dz = F (γ(b)) − F (γ(a)) for all
piecewise smooth curves γ : [a, b] → D.

Proof. We show first that (iv) implies (iii). We may assume that γ : [a, b] → D is smooth. Then h(t) :=
F (γ(t)) is continuously differentiable and h′(t) = f(γ(t))γ′(t) for all t ∈ [a, b]. It follows that F (γ(b)) −
F (γ(a)) = h(b) − h(a) =

∫ b

a
h′(t) dt =

∫ b

a
f(γ(t))γ′(t) dt =

∫
γ

f(z) dz. The implication (iii) =⇒ (ii) is
obvious. To show (ii) =⇒ (i) we may assume that γ1, γ2 : [0, 1] → D (possibly after a reparametrization).
Define γ : [0, 2] → D by γ(t) = γ1(t)χ[0,1](t) + γ2(2 − t)χ[1,2](t) Then γ is piecewise smooth and closed
and therefore, 0 =

∫
γ f(z) dz =

∫
γ1

f(z) dz −
∫

γ2
f(z) dz. It remains to be shown that (i) =⇒ (iv). Fix

11
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z0 ∈ D. Then, for all w ∈ D, there exists a smooth curve γ : [a, b] → D such that γ(a) = z0 and γ(b) = w.
Define

F (w) :=
∫

γ

f(z) dz.

It follows from (iii) that the definition of F (w) is independent of the choice of γ. Now let σ : [c, d] → D
be an arbitrary, piecewise smooth path in D. Then we extend the path σ to a path σ̃ : [c̃, d] → D, c̃ < c,
σ̃/[c,d] = σ such that σ̃(c̃) = z0 and obtain

∫

σ

f(z) dz =
∫

σ̃

f(z) dz −
∫

σ̃/[c̃,c]

f(z) dz

= F (σ̃(d)) − F (σ̃(c)) = F (σ(d)) − F (σ(c)).

Now let w0 ∈ D and Kε(w0) := {w : |w −w0| < ε} ⊂ D. For w ∈ Kε(z0) define γ(t) = w0 + t(w −w0) for
t ∈ [0, 1]. Then F (w)−F (w0) =

∫
γ f(z) dz =

∫ 1

0 f(w0 + t(w−w0)) dt(w−w0). Thus, F (w)−F (w0)
w−w0

→ f(w0)
as w → w0.

Lemma 2.1.3. Let D ⊂ C be an open sphere and f : D → C continuous. If
∫

δR f(z) dz = 0 for all
rectangles R ⊂ D with sides parallel to the axes, then f is Cauchy integrable on the sphere D

Proof. Let a ∈ D be fixed. For w ∈ D define F (w) :=
∫

γw
f(z) dz, where

It follows from

that F (z0 + h) − F (z0) =
∫

γz0+h
f(z) dz −

∫
γz0

f(z) dz =
∫

γ̃
f(z) dz =

∫ 1

0
f(z0 + th) dth. Thus, δF

δx (z0) =

f(z0). Moreover, F (z0 + ih) − F (z0) =
∫ 1

0
f(z0 + ith) dtih. Thus, δF

δy (z0) = if(z0). Let F = u + iv. Then
δF
δx = ux + ivx = −i( δF

δy = −iuy + vy , or ux = vy and vx = −uy. Since the Cauchy-Riemann equations
hold, F is analytic and F ′ = ux + ivx = f on D. It follows from the previous theorem that F is an
antiderivative of f on D; i.e., f is Cauchy integrable on D.

It follows from Theorem 2.1.2 (iv) that every polynomial is Cauchy integrable on C. Also, by Example
1.2.2 (b), every function f which has a power series representation, is Cauchy integrable on its circle of
convergence.1 As motivation for the next definition, consider D = C \ {0} and f(z) = 1

z . If S denotes the
unit sphere, then

∫
δS f(z) dz = 2πi. This shows that f is not Cauchy integrable on C \ {0}, although f

is analytic there. However, as we will see next, f is locally Cauchy integrable on C \ {0}.

Definition 2.1.4. Let D ⊂ C be open and f ∈ C(D). Then f is called locally Cauchy integrable if for all
a ∈ D there exists an open neighborhood U ⊂ D of a such that f/U is Cauchy integrable.

Theorem 2.1.5. Let D ⊂ C be open. If f : D → C is continuous and analytic on D \ {a}, then f is locally
Cauchy integrable.

1It follows from the standard comparison theorems for infinite series, that
∑∞

n anzn converges absolutely for |z| < R if
and only if t

∑∞
n

an
n+1

zn+1 converges absolutely for |z| < R.
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Proof We assume first that f is analytic on D. We show that
∫

δR
f(z) dz = 0 for all rectangles R ⊂ D

with sides parallel to the axes. Let R be such a rectangle, set R0 := R, and d := L(δR). Divide R0 into
four congruent rectangles R1, R2, R3, R4,

Then L(δRk) = 1
2L(δR0) = 1

d and
∫

δR
f(z) dz =

∑n
k=1

∫
δRk f(z) dz. Choose k0 such that |

∫
δR

f(z) dz| ≤
4|
∫

δRk0 f(z) dz| and define R1 := Rk0
0 . Repeating this process (induction) yields a nested sequence of

rectangles Rn such that

|
∫

δRn

f(z) dz| ≤ 4|
∫

δRn+1

f(z) dz| and L(δRn+1) =
1
2
L(δRn).

Thus,

|
∫

δR

f(z) dz| ≤ 4n|
∫

δRn

f(z) dz| and L(δRn) =
d

2n
.

Choose a ∈ ∩n∈N0Rn 6= ∅.2 Since f is analytic there exists a continuous function g : D → C with g(a) = 0
such that, for all z ∈ D,

f(z) = f(a) + f ′(a)(z − a) + g(z)(z − a).

For ε > 0 choose n ∈ N such that |g(z)‖ ≤ ε
d2 for all z ∈ Rn. Then3

|
∫

δR

f(z) dz| ≤ 4n|
∫

δRn

f(a) + f ′(a)(z − a) dz +
∫

δRn

g(z)(z − a) dz|

= 4n|
∫

δRn

g(z)(z − a) dz| ≤ 4n d

2n

ε

d2

d

2n
= ε.

Thus,
∫

δR
f(z) dz = 0 for all analytic functions f : D → C.

Now assume that f is continuous on D and analytic on D\{a}. Again, we show that
∫

δR f(z) dz = 0
for all rectangles R ⊂ D with sides parallel to the axes and consider the following three cases.
(1): If a /∈ R, then

∫
δR

f(z) dz = 0 by the first part of the proof.
(2): If a ∈ δR, then we consider a sequence of rectangles Ri ⊂ R with sides parallel to the axes such
that Ri → R as i → ∞. By continuity, limi→∞

∫
δRi

f(z) dz =
∫

δR f(z) dz. By the first part of the proof,∫
δRi

f(z) dz = 0 for all i. Thus,
∫

δR f(z) dz = 0.
(3): If a ∈ R \ δR, then we devide R into two recangles R1, R2 ⊂ R with sides parallel to the axes, R =
R1∪R2, and a ∈ δR1∩δR2. Then, as shown in case (2),

∫
δR f(z) dz =

∫
δR1 f(z) dz+

∫
δR2 f(z) dz = 0.

Remark 2.1.6. Notice that the proof works also if f : D → C is continuous and analytic on D \
{finite number of vertical or horizontal, compact line segments}.

2Assume ∩Rn = ∅. Then R0 ⊂ ∪Rc
n = C. Since R0 is compact and the complements Rc

n are open, there exists m ∈ N
such that R0 ⊂ ∪m

n=0Rc
n. But then Rc

0 ⊃
(
∪m

n=0Rc
n

)c
= ∩m

n=0Rn = Rm which contradicts the fact thet Rm ⊂ R0. Thus
∩Rn 6= ∅.

3Show that
∫
γ z dz = 0 for all absolutely continuous, closed paths γ.
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2.2 Cauchy’s Theorem

Definition 2.2.1. Let D ⊂ C be open, let γ0, γ1 : [0, 1] → D be piecewise smooth paths (curves), and let
δ : [0, 1] × [0, 1] → D be continuous.Then

(a) γ0, γ1 are homotopic in D with fixed endpoints if γ0(t) = δ(t, 0), γ1(t) = δ(t, 1) for all t ∈ [0, 1] and
γ0(0) = δ(0, s) = γ1(0), γ0(1) = δ(1, s) = γ1(1) for all s ∈ [0, 1].

(b) If γ0, γ1 are closed, then they are homotopic as closed curves if t → δ(t, s) is a closed curve for each
s ∈ [0, 1] and γ0(t) = δ(t, 0), γ1(t) = δ(t, 1) for all t ∈ [0, 1].

(c) A curve γ0 is null-homotopic in D if there exists a constant curve γ1(t) = a ∈ D such that γ0 and γ1

are homotopic as closed curves.

(d) The open set D is simply connected if every closed curve in D is null-homotopic in D.

Example 2.2.2. (a) D simply conected, not connected:

(b) D connected, not simply connected:

(c) If D is convex, then D is simply connected since δ(t, s) := sγ1(t)+(1−sγ0(t) connects any two closed
curves continuously inD.
(d) An open set D is called star-shaped if there exists a ∈ D such that for all z ∈ D the line-segment
between a and z is contained in D. It is easy to see that star-shaped sets are simply connected.
(e) A sliced half-plane D := C \ R+eiα is simply connected. To see this consider D = C \ R−. Let γ be a
closed curve in D. Then γ has a polar-coordinates representation γ(t) = r(t)eiα(t) with −π < α(t) < π
for all t ∈ [0, 1]. Define δ(t, s) := r((1 − s)t)eiα(t)(1−s). Then δ folds back the curve γ and contracts it
towards the constant curve γ1(t) = γ(0) ∈ D. Thus, D is simply connected.
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Theorem 2.2.3 (Cauchy’s Theorem). Let f : D → C be continuous on on open set D and analytic on
D \ {a}.

(i) If γ0, γ1 are homotopic as closed curves in D, then
∫

γ0
f(z) dz =

∫
γ1

f(z) dz.

(ii) If γ is a null-homotopic closed curve in D, then
∫

γ
f(z) dz = 0.

(iii) If γ0, γ1 are homotopic in D with fixed endpoints, then
∫

γ0
f(z) dz =

∫
γ1

f(z) dz.

(iv) If D is simply connected, then f is Cauchy integrable.

Proof. With the help of a few technical lemmas, the first statement will be shown over the next few
pages. It is clear that (i) implies (ii) if one sets γ = γ0 and γ1(t) = a, where a ∈ D is as in Definition 2.2.1.
If γ0, γ1 are homotopic in D with fixed endpoints, then γ̃0 := γ0 +(−γ0), γ̃1 := γ1 +(−γ0) are homotopic
as closed curves.4Thus, if (i) holds then 0 =

∫
γ̃0

f(z) dz =
∫

γ̃1
f(z) dz =

∫
γ1

f(z) dz −
∫

γ0
f(z) dz. This

shows that (i) implies (iii). It follows immediately from Theorem 2.1.2 that (ii) implies (iv). It remains
to be shown that (i) holds.

We need the following three lemmas, and for those the notion of antiderivatives along continuous
curves. Let Q ⊂ C, ρ : Q → D continuous, and f : D → C continuous. A continuous function F : Q → C
is called an antiderivative of f along ρ if for all q ∈ Q there exist

(1) a neighborhood U of q ∈ Q,

(2) a neighborhood V of ρ(q) ∈ D, and

(3) an antiderivative G of f/V

such that ρ(U) ⊂ V and F (u) = G(ρ(u)) for all u ∈ U .

Lemma A. Let F : Q → C be an antiderivative of f along ρ. Then

(i) If σ : M → Q is continuous, then F ◦ σ is an antiderivative of f along ρ ◦ σ.

(ii) If Q is connected and if F̃ is another antiderivative of F along ρ, then F̃ = F + c for some c ∈ C.

Proof. The first statement follows from the continuity of σ. To prove the second statement, fix a ∈ Q,
define c := F̃ (a) − F (a) and

M := {q ∈ Q : F̃ (q) − F (q) = c}.

Since M is nonempty (a ∈ M), closed (M = (F̃ −F )−1{c}), and Q is connected, we have to show that M
is open. Let b ∈ M ; i.e., F̃ (b) = F (b) + c. Then there exist neighborhoods U, Ũ of b ∈ Q, neighborhoods
V, Ṽ of ρ(b) ∈ D, and antiderivatives G, G̃ of f/V

, f/Ṽ
such that ρ(U) ⊂ V , ρ(Ũ) ⊂ Ṽ , F (u) = G(ρ(u))

and F̃ (u) = G̃(ρ(u)) for all u ∈ U . Choosig a small enough neighborhood of b, one may assume that
U = Ũ , V = Ṽ and that U, V are connected. Then

G̃(ρ(b)) = F̃ (b) = F (b) + c = G(ρ(b)) + c

and G̃′ − G′ = f/Ṽ
− f/V

= 0 on V . This shows that F̃ (u) − F (u) = G̃(ρ(u)) − G(u) = c for all u ∈ U .
Thus, U ⊂ M . This shows that M is open.

4If γ : [0, 1] → D, then we denote by γ + (−γ) the curve t → γ(2t) if t ∈ [0, 1/2) and t → γ(2 − 2t) if t ∈ [1/2, 1]
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Lemma B. If f is analytic and Q = {(x, y) : 0 ≤ x, y ≤ 1}, then there exists an antiderivative of f along
ρ : Q → D.

Proof. Let T denote the set of all t > 0 which have the property that for all rectangles R ⊂ Q with
perimeter L(∂R) ≤ t there exists an antiderivative of f along ρ/R

. We have to show that 4 ∈ T .

Step 1. We show that T is nonempty. Assume that T is empty. Then, for all n ∈ N, there exists a rectangle
Rn in Q with perimeter less than 1/n such that f has no antiderivative along ρ/Rn

. Let rn ∈ Rn ⊂ Q.
Since Q is compact, there exists a subsequence r̃n → r ∈ Q. Since f is continuous on D and analytic on
D \ {a}, it follows from the local Cauchy Theorem 2.1.5 that f is locally Cauchy integrable on D. Thus,
there exist neighborhoods U of r and V of ρ(r) ∈ D such that f/V

has an antiderivative G and ρ(U) ⊂ V .
Thus, F (u) := G(ρ(U)) is an antiderivative of f along ρ/U

. Since Rn ⊂ U for n large, there exists an
antiderivative of f along ρ/Rn

,which is a contradiction.

Step 2. Let t ∈ T and let R ⊂ Q be a rectangle with L(∂R) ≤ 4
3 t. Then R is the union of two rectangles

R1, R2 ⊂ Q whose perimeter is at most t. Let Fk be the antiderivative of f along ρ/Rk
(k = 1, 2). Since

R1 ∩R2 is connected, it follows from Lemma A that F1/R1∩R2
= F2/R1∩R2

+ c for some constant c. Define
F as F1 on R1 and as F2 + c on R2. Then F is an antiderivative of f along ρ/R

. Thus, if t ∈ T , then
4
3 t ∈ T . This shows that 4 ∈ T .

Lemma C. Let γ : [0, 1] → D be a piecewise smooth curve and let F be an antiderivative of f along γ.
Then

∫
γ

f(z) dz = F (1) − F (0).

Proof. Since γ([0, 1]) is compact in D and f locally Cauchy integrable (by Theorem 2.1.5), there exist
n open subsets Vk ⊂ D, a partition 0 = t0 < t1 < · · · < tn = 1, and analytic function Fk such that
γ([tk−1, tk]) ⊂ Vk and F ′

k = f/Vk
for all 1 ≤ k ≤ n. It follows that F (t) = Fk(γ(t)) + ck for t ∈ [tk−1, tk].

Thus,
∫

g ammaf(z) dz =
∑n

k=1

∫
γk

f(z) dz =
∑n

k=1 Fk(γ(tk)) − Fk(γ(tk−1)) =
∑n

k=1 F (tk) − f(tk−1) =
F (1) − F (0).

Proof of (i). Let k = 0, 1, σk(t) := (k, t), τk(t) := (t, k). Since γ0, γ1 are homotopic as closed curves in D
there exists a continuous δ : [0, 1]× [0, 1] → D such that t → δ(t, s) is a closed curve for each s ∈ [0, 1] and
γ0(t) = δ(t, 0) = δ(τ0(t)), γ1(t) = δ(t, 1) = δ(τ1(t)) for all t ∈ [0, 1]. It follows from Lemma C that there
exists an antiderivative F of f along δ. By Lemma A (i), there exist antiderivatives Fk = F ◦ τk along
δ◦τk = γk. By Lemma C,

∫
γk

f(z) dz = Fk(1)−Fk(0) = F (τk(1))−F (τk(0)) = F (1, k)−F (0, k). By Lemma
A (i), the functions F ◦σk are antiderivatives of f along δ ◦σk. Since δ ◦σ0(t) = δ(0, t) = δ(1, t) = δ ◦σ1(t)
it follows from Lemma A (ii) that F ◦ σ1 − F ◦ σ0 = const. Thus,

∫
γ1

f(z) dz = F (1, 1) − F (0, 1) =
F ◦ σ1(1) − F ◦ σ0(1) = F ◦ σ1(0) − F ◦ σ0(0) = F (1, 0) − F (0, 0) =

∫
γ0

f(z) dz.

2.3 Cauchy’s Integral Formula

Let γ be a null-homotopic closed curve in an open subset D of C and f : D → C analytic. Then
g(z) = f(z)−f(a)

z−a with g(a) := f ′(a) is continuous on D and analytic on D \ {a}. Applying Cauchy’s
Theorem 2.2.3 to the function g, we obtain the following statement.

Theorem 2.3.1 (Cauchy’s Integral Formula). If D ⊂ C is open, γ : [α, β] → D a null-homotopic closed
curve in D, f : D → C analytic, and a ∈ D \ γ[α, β], then

Indγ(a)f(a) =
1

2πi

∫

γ

f(z)
z − a

dz,
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where Indγ(a) = 1
2πi

∫
γ

1
z−a dz denotes the index of the closed curve γ with respect to a.

In the following we will collect some properties of the index Indγ(a). Let γ0(t) := a + Re±2πit with
t ∈ [0, n] denote a circle of radius R that winds n-times counterclockwise (resp. clockwise) around the
point a. Then

(A) Indγ0(a) =
1

2πi

∫

γ0

1
z − a

dz = ±
∫ n

0

1 dt = ±n

is the winding number of the closed curve γ0 around a. It follows from Cauchy’s Theorem 2.2.3 that
Indγ(a) = Indγ0(a) for all closed curves γ that are homotopic to γ0 as closed curves in C \ {a}. Thus,
Indγ(a) is also called the winding number of a closed curve γ around a.

Proposition 2.3.2. Let γ : [a, b] → C be a closed curve and W = C \ γ[a, b].

(i) Indγ : W → Z is continuous and therefore locally constant.

(ii) Indγ+γ̃ = Indγ + Indγ̃ for all closed curves γ̃ with the same endpoints as γ.

(iii) Ind−γ = −Indγ.

(iv) The interior Int(γ) := {a ∈ W : Indγ(a) 6= 0} is open and bounded, the exterior Ext(γ) := {a ∈
W : Indγ(a) = 0} is open, and C \ γ[a, b] is the disjoint union of the intirior and exterior of the
closed curve γ.

Proof. We show below that Indγ maps W into Z. If an → a in W , then 1
z−an

→ 1
z−a uniformly in

z ∈ γ[a, b]. Thus, Indγ(an) =
∫

γ
1

z−an
dz →

∫
γ

1
z−a dz = Indγ(a). This proves (i). The statements (ii) and

(iii) are obvious. The openess of Int(γ) and Ext(gamma) follows from the continuity of γ as a function
with values in Z. Let Mr := {a ∈ C : |a| > r} ⊂ W . By (i), Indγ is constant on Mr. Since

∫
γ

1
z−a dz = 0

for |a| sufficiently large, it follows that Mr ⊂ Ext(γ). This shows that Int(gamma) is bounded. It remains
to be shown that Indγ(a) ∈ Z for all a ∈ W . This follows from the following discussion of the complex
logarithm.

Let D ⊂ C \ {0} be simply connected. By Cauchy’s Theorem 2.2.3, there exists an analytic function F̃

such that F̃ ′(z) = 1
z for all z ∈ D. By the quotient rule, d

dz
eF̃ (z)

z = 0. Therefore, eF̃ (z) = c̃z for some c̃

and all z ∈ D. Choose c such that e−c = c̃ and define F (z) = F̃ (z) + c. Then F is an antiderivative of
z → 1

z on D and eF (z) = z for all z ∈ D. We call F a branch of the logarithm on D.
Notice that if F is a branch of the logarithm on D, then F + 2πni (n ∈ Z) is another branch. If 1 ∈ D
and F (1) = 0, then F is called the main branch of the logarithm on D.
If D = C \ (−∞, 0] and F (1) = 0, then F is called the main branch of the logarithm and is denoted by
“ln”. In particular, if x > 0, then F (x) =

∫ x

1
1
t dt = ln x.

Now let γ : [α, β] → C be a piecewise smooth curve and a ∈ C \ γ[α, β]. Then

(∗) e
∫

γ
1

z−a dz =
γ(β) − a

γ(α) − a
.

In particular, if γ is closed, then Indγ(a) = 1
2πi

∫
γ

1
z−a dz ∈ Z. To show (∗) we observe first that∫

γ
1

z−a dz =
∫

γ−a
1
z dz, where (γ − a)(t) := γ(t) − a. Hence, we may assume that a = 0 ∈ C \ γ[α, β].
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Then there exists a partition α = t0 < · · · < tn = β and disks V1, · · · , Vn ⊂ C \ {0} such that
γ[tk−1, tk] ⊂ Vk , (1 ≤ k ≤ n). Let Fk be a branch of the logarithm on Vk (1 ≤ k ≤ n). Then∫

γk

1
z dz = Fk(γ(tk))−Fk(γ(tk−1), where γk := γ/[tk−1,tk ]

. Therefore, e
∫

γk

1
z−a dz = γ(tk)

γ(tk−1)
and e

∫
γ

1
z−a dz =

∏n
k=1

γ(tk)
γ(tk−1)

= γ(β)
γ(α) .

Example 2.3.3. Since Indγ = Indγ1 + Indγ2 + Indγ3 , it follows from (A) that the Indγ is given by

Theorem 2.3.4 (Cauchy’s Integral Formula for Derivatives). Let D ⊂ C be open and f : D → C analytic.
Then f is infinitely often complex differentiable on D and, for every null-homotopic closed curve γ :
[α, β] → D,

Indγ(a)f (n)(a) =
n!
2πi

∫

γ

f(z)
(z − a)n+1

dz

for all a ∈ D \ γ[α, β] and n ∈ N0.

Proof. (1) Let g : γ[α, β] → C be continuous. Define Hn : C \ γ[α, β] → C by Hn(a) :=
∫

γ
g(z)

(z−a)n dz.

Since g(z)
(z−ak)n → g(z)

(z−a)n uniformly for z ∈ γ[α, β] as ak → a in C\γ[α, β], it follows that Hn is continuous.
Moreover, Hn is analytic and H ′

n = nHn+1. This follows from

Hn(a) − Hn(a0)
a − a0

=
∫

γ

1
a − a0

(
1

(z − a)n
−

1
(z − a0)n

)
g(z) dz

=
∫

γ

1
a − a0

(
1

(z − a)
− 1

(z − a0)

)(n−1∑

k=0

1
(z − a)n−1−k

1
(z − a0)k

)
g(z) dz

=
n−1∑

k=0

∫

γ

g(z)
(z − a0)k+1

1
(z − a)n−k

dz

=
n−1∑

k=0

∫

γ

g̃(z)
(z − a)n−k

dz →
n−1∑

k=0

∫

γ

g(z)
(z − a0)n+1

dz = nHn+1(a0)

as a → a0, where we set g̃(z) := g(z)
(z−a0)k+1 and use that a →

∫
γ

g̃(z)
(z−a)n−k dz is continuous, as shown above.

(2) By Cauchy’s Integral formula 2.3.1, Indγ(a)f(a) = 1
2πi

∫
γ

f(z)
(z−a) dz. Now the statement of the theorem

follows inductively from (1) and the fact that a → Indγ(a) is piecewise constant.
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Corollary 2.3.5 (Morera’s Theorem). Let D ⊂ C be open, a ∈ D and f : D → C. The following are
equivalent.

(i) f is analytic on D.

(ii) f is continuous on D and analytic on D \ {a}.

(iii) f is continuous and locally Cauchy integrable on D.

Proof. Clearly, (i) implies (ii), and (ii) implies (iii) by Theorem 2.1.5. If (iii) holds, then there exists
a local antiderivatice on some neighborhood U for each point in D. By Theorem 2.3.4, f/U

= F ′
/U

is
infinitely often complex differentiable. Thus, f is analytic.

2.4 Cauchy’s Theorem for Chains

Let D ⊂ C be open, γk : [α, β] → D (1 ≤ k ≤ n) piecewise smooth closed curves, and mk ∈ Z. Then

γ :=
n∑

k=1

mkγk

is called a chain in D. The integral along the chain γ is defined as

∫

γ

f(z) dz :=
n∑

k=1

mk

∫

γk

f(z) dz.

For a /∈ γ[α, β] the winding number of γ with respect to a is W (γ, a) := 1
2πi

∫
γ

1
z−w dz, and the interior

of the chain γ is defined as the set Int(γ) := {a ∈ C \ γ[α, β] : W (γ, a) 6= 0}. A chain γ is called
null-homologous in D if Int(γ) ⊂ D.

Example 2.4.1. (a) The chain γ = 2γ1 − 3γ2 − γ3 is null-homologous in an open set D if D contains the
interior of the three circles.

(b) The chain γ := γ1 + 2γ2 + 2γ3 − γ4 is null-homologous in C \ {z1, z2, z3}.
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(c) Let D := C \ {0}, γ1(t) := e2πt, and γ2(t) := 2e2πt for t ∈ [0, 1]. Then γ1, γ2, and γ := γ1 + γ2 are not
null-homologous in D, but the chain γ̃ := γ1 − γ2 is null- homologous in D.

(d) Let D := C \ {two disjoint discs}. The path γ is null-homologous, but not null-homotopic.

We observe that every null-homotopic closed curve γ in D is null-homologous in D. In fact, let a ∈ C\D.
Then z → 1

z−a is analytic on D, and therefore W (γ, a) = 1
2πi

∫
γ

1
z−a dz = 0. Thus a /∈ Int(γ), Int(γ) ⊂ D,

and therefore γ is null-homologous.

Theorem 2.4.2 (Cauchy’s Theorem for Chains). If D ⊂ C is open, γ : [α, β] → D a null-homologous
chain in D, f : D → C analytic, and a ∈ D \ γ[α, β], then

(i)
∫

γ
f(z) dz = 0,

(ii) W (γ, a)f (n)(a) = n!
2πi

∫
γ

f(z)
(z−a)n+1 dz (n ∈ N0).

Proof. We can assume without loss of generality that D is a bounded open set containing γ (if necessary,
we can replace D by the intersection of D with a large disc containing the chain γ). We show that

(∗) W (γ, a)f(a) =
1

2πi

∫

γ

f(z)
z − a

dz.

Then (ii) folows with differentiation, and (i) follows by applying (∗) to the analytic function g(z) :=
(z−a)f(z). This yields

∫
γ

f(z) dz =
∫

γ
g(z)
z−a dz = 2πiW (γ, a)g(a) = 0. To prove (∗) we define g : D×D → C

by

g(v, z) :=
{

f(v)−f(z)
v−z v 6= z

f ′(z) v = z
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The function g is continuous (see below) and the function h : C → C defined by

h(z) :=

{ ∫
γ

g(v, z) dv z ∈ D∫
γ

f(v)
v−z dv z /∈ D

is entire and bounded (see below). By Liouville’s Theorem ??, h = 0 and therefore (∗) holds. To prove
the continuity of g, let (v0, z0) ∈ D. If v0 6= z0, then g is obviously continuous. If v0 = z0, let U be a disc
in D around z0. For all v, z ∈ U we have that

g(v, z) =
∫ 1

0

f ′(z + t(v − z)) dt.

Thus, by the uniform continuity of f ′ we obtain the continuity of g. If v = z, then the integral represen-
tation of g is obvious; if v 6= z, then

∫ 1

0 f ′(z + t(v − z)) dt = 1
v−z

∫
γ f ′(w) dw = 1

v−z [f(γ(1)) − f(γ(0))] =
1

v−z [f(v) − f(z)] = g(v, z).

For v ∈ D we have that z → g(v, z) is continuous on D and analytic in D \ {v}. By Morera’s
Theorem 2.3.5, the function z → g(v, z) is analytic on D for all v ∈ D. If γ̃ is a null-homotopic path in
D, then

∫
γ̃ h(z) dz =

∫
γ̃

∫
γ g(v, z) dv dz =

∫
γ

∫
γ̃ g(v, z) dz dw = 0. Thus, h is analytic on D.

If v ∈ D and z ∈ C \ D, then z → f(v)
v−z is analytic. As above, it follows that h is analytic on C \D.

Ir remains to be shown that h is analytic in a ∈ ∂D. Since a /∈ D, it follows that a /∈ Int(γ) or
W (γ, a) = 0. There exists a disc U around a which is contained in C \ γ[α, β]. Since U is connected it
follows that W (γ, z) = 0 for all z ∈ U . Thus, for all z ∈ U ∩ D,

∫

γ

f(v)
v − z

dv =
∫

γ

f(v) − f(z)
v − z

dv +
∫

γ

f(z)
v − z

dv

=
∫

γ

g(v, z) dv + f(z)2πiW (γ, z) =
∫

γ

g(v, z) dv.

Since h(z) =
∫

γ g(v, z) dv =
∫

γ
f(v)
v−z dv for all z ∈ U ∩D and, by definition, h(z) =

∫
γ

f(v)
v−z dv for all z ∈ U

which are not in D, it follows that

h(z) =
∫

γ

f(v)
v − z

dv

for all z ∈ U . For v ∈ γ[α, β], the function z → f(v)
v−z is analytic on U . As above it follows that h is analytic

on U . Thus, h is entire. Since h(z) =
∫

γ
f(v)
v−z dv for all z with |z| > R (R large) it follows that h(z) is

bounded if |z| > R. Since h(z) is bounded if |z| ≤ R (by continuity), it follows that h is bounded.

Example 2.4.3. Let f be analytic on D := C \ {z1, z2} and consider the closed curves
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Then γ̃ := γ − γ1 − γ2 is null-homologous in D. This implies that
∫

γ̃
f(z) dz = 0, or

∫

γ

f(z) dz =
∫

γ1

f(z) dz +
∫

γ2

f(z) dz.

2.5 Principles of Linear Analysis

Let X be a vector space over C with norm ‖ · ‖ : X → R+ satisfying, for all x, y ∈ X and λ ∈ C,

‖λx‖ = |λ|‖x‖, ‖x + y‖ ≤ ‖x‖ + ‖y‖ and ‖x‖ = 0 iff x = 0.

A sequence (xn) (n ∈ N) is called a Cauchy sequence in X if for all ε > 0 there exists n0 ∈ N such that
‖xn − xm‖ ≤ ε for all n, m ≥ n0. The normed linear space X is called a Banach space if it is complete;
i.e., if every Cauchy sequence converges in X . Since every normed vector space X is a metric space with
metric d(x, y) := ‖x−y‖, it can always be enlarged to become complete; i.e., for all normed vector spaces
X , it is possible to find a Banach space X

c
in which X is isometrically embedded as a dense subset. The

Banach space X
c

is unique up to isometric isomorphisms and can be obtained, as ususal, as the vector
space of all Cauchy sequences modulo the zero-sequences with norm ‖(xn)‖c := limn→∞ ‖xn‖.

Example 2.5.1. (a) Every finite dimensional, normed vector space Cn is a Banach space and all norms
on Cn are equivalent; i.e., m‖ · ‖1 ≤ ‖ · ‖ ≤ M‖ · ‖1 for some m, M > 0.

(b) Let s be the vector space of all finite sequences (sn) (i.e., sn = 0 for all but finitely many n ∈ N). The
completion of s under the norm ‖(sn)‖1 :=

∑∞
n=0 |sn| is the space of all absolutely summable sequences

and is denoted by l1. The completion of s under the norm ‖(sn)‖∞ := supn |sn| is the space of all zero
sequences and is denoted by c0.

(c) Let P [0, 1] be the vector space of all polynomials p : [0, 1] → C. If the norm is ‖p‖∞ := supt∈[0,1] |p(t)|,
then the completion of P [0, 1] is C[0, 1], the space of all continuous functions f : [0, 1] → C. If the norm
is ‖p‖1 :=

∫ 1

0
|p(t)| dt, then the completion is L1[0, 1], the space of all (equivalence classes of) Lebesgue

integrable functions. If the norm is ‖p‖1,∞ := ‖p‖∞ + ‖p′‖∞, then the completion is C1[0, 1], the space
of all continuously differentiable functions. And finally, if the norm is ‖p‖−1,∞ := supx∈[0,1]

∣∣∫ x

0 p(t) dt
∣∣,

then the completion is C−1[0, 1], the space of all (equivalence classes of) generalized, Riemann integrable
functions. Since ‖p‖−1,∞ ≤ ‖p‖1 ≤ ‖p‖∞ ≤ ‖p‖1,∞ for all polynomials p, it follows from the construction
of the completions via Cauchy sequences that C1[0, 1] ⊂ C[0, 1] ⊂ L1[0, 1] ⊂ C−1[0, 1].

Definition 2.5.2. Let X,Y be normed vector spaces. A linear operator T : X → Y is called bounded if
there exists M > 0 such that ‖Tx‖Y ≤ M‖x‖X for all x ∈ X.

Proposition 2.5.3. Let X,Y be normed vector spaces and T : X → Y linear. The following are equivalent:

(i) T is bounded (ii) T is continuous

(iii) T is continuous in 0 (iv) sup‖x‖≤1 ‖Tx‖ < ∞

Proof. Statement (i) implies (ii) since ‖Tx − Ty‖ ≤ M ‖x − y‖. Clearly, (ii) implies (iii). If (iii) holds,
then there exists δ > 0 such that ‖Tx‖ ≤ 1 if ‖x‖ ≤ δ. If ‖x‖ ≤ 1, then ‖T (δx)‖ ≤ 1 or sup‖x‖≤1 ‖Tx‖ ≤ 1

δ .

If (iv) holds, choose M > sup‖x‖≤1 ‖Tx‖. Then
∥∥∥T x

‖x‖

∥∥∥ ≤ M or ‖Tx‖ ≤ M ‖x‖ for all x ∈ X .
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Proposition 2.5.4. Let X be a normed space and Y be Banach space. Then the space L(X, Y ) of all
bounded linear operators T : X → Y is a Banach space with norm ‖T‖ := sup‖x‖≤1 ‖Tx‖.

Proof. It is easy to see that L(X, Y ) is a normed vector space. If (Tn) is a Cauchy sequence in L(X, Y ),
then ‖Tn‖ ≤ M for some M > 0 and all n ∈ N and (Tnx) is a Cauchy sequence in Y for all x ∈ X . Since
Y is complete, we can define Tx := limn Tnx. It is easy to see that T is linear and bounded. Let ε > O.
Then there exists n0 such that ‖Tn − Tm‖ ≤ ε for all n, m ≥ n0. Thus, ‖Tnx − Tmx‖ ≤ ε ‖x‖ for all x
and n, m ≥ n0. Taking the limit as m → ∞, we obtain ‖Tnx − Tx‖ ≤ ε ‖x‖ for all x and n ≥ n0. Thus,
there exists n0 such that ‖Tn − T‖ ≤ ε for all n ≥ n0. This shows that Tn → T in L(X, Y ).

Corollary 2.5.5. The dual space X∗ := L(X, C) of a normed vector space X is a Banach space.

Example 2.5.6. (a) (Cn)∗ = Cn and 〈x, x∗〉 := x∗(x) =
∑n

i=1 x∗
i xi for all x∗ ∈ Cn and x ∈ Cn.

(b) c∗0 = l1 and 〈x, x∗〉 := x∗(x) =
∑∞

i=1 x∗
i xi for all x∗ ∈ l1 and x ∈ c0.

(c) l∗1 = l∞ and 〈x, x∗〉 := x∗(x) =
∑∞

i=1 x∗
i xi for all x∗ ∈ l∞ and x ∈ l1.

(d) L1[0, 1]∗ = L∞[0, 1] and 〈x, x∗〉 := x∗(x) =
∫ 1

0 x∗(t)x(t) dt for all x∗ ∈ L∞[0, 1] and x ∈ L1[0, 1].
(e) C[0, 1]∗ = BV0[0, 1] and 〈x, x∗〉 := x∗(x) =

∫ 1

0
x(t) dx∗(t) for all x∗ ∈ BV0[0, 1] and x ∈ C[0, 1].

Theorem 2.5.7 (Principle of Uniform Boundedness). Let X be a Banach space, Y a normed space and
F ⊂ L(X, Y ). If, for all x ∈ X, there exists Mx > 0 such that ‖Tx‖ ≤ Mx for all T ∈ F , then there
exists M > 0 s.t. ‖T‖ ≤ M for all T ∈ F .

Proof. Recall that a set S ⊂ X is called nowhere dense if the interior of its closure S is empty and
that Baire’s Theorem states that in a complete metric space X no non-empty open subset of X is
the countable union of nowhere dense subsets. Now, let Xn = {x ∈ X : ‖Tx‖ ≤ n for all T ∈ F} =
∩T∈F {x ∈ X : ‖Tx‖ ≤ n}. Then Xn is closed and

⋃
Xn = X . By Baire’s Theorem, the interior of some

Xn0 is nonempty. Let x0 ∈ Xn0 and ε > 0 such that the spere K(x0, ε) ⊂ Xn0 . Then ‖T (x0 + εz)‖ ≤ n0

for all T ∈ F and all ‖z‖ ≤ 1. But then ‖T (z)‖ ≤ 1
ε (n0 + ‖T (x0)‖) ≤ 2n0

ε for all T ∈ Fand ‖z‖ ≤ 1.

Theorem 2.5.8 (Banach). 5 Let X be a normed space, Y a Banach space, Tn ∈ L(X, Y ), and ‖Tn‖ ≤ M
for all n. The following are equivalent :

(i) There exists T ∈ L(X, Y ) such that Tnx → Tx for all x ∈ X.

(ii) (Tnx) is a Cauchy sequence for all x in a total subset of X.6

(iii) There exists T ∈ L(X, Y ) : Tn· → T · uniformly on compact subsets of X.

Proof. Clearly, (iii) implies (i) and (i) implies (ii). We show that (ii) implies (iii). If (ii) holds, then the
sequences Tnw converge for all w ∈ D, where D is the dense linear span of the total subset. Let ε > 0,
x ∈ C, C compact, δ = ε

5M . There exists a finite number of yi ∈ C such that all x ∈ C can be written as
x = yi + zx where ‖zx‖ ≤ δ. Also, there exists wi ∈ D such that yi = wi + zyi , where ‖zyi‖ ≤ δ. Thus,
for all x ∈ C,

‖Tnx − Tmx‖ ≤ ‖Tnwi − Tmwi‖ + ‖Tnzx‖ + ‖Tmzx‖ + ‖Tnzyi‖ + ‖Tmzyi‖ ≤ ‖Tnwi − Tmwi‖ +
4ε

5
.

Now, choose n0 such that ‖Tnwi − Tmwi‖ ≤ ε
5 for all n, m ≥ n0 and all of the finitely many wi. Then,

‖Tnx − Tmx‖ ≤ ε for all n, m ≥ n0 and all x ∈ C. Now, define Tx := lim Tnx. Then T is linear, ‖T‖ ≤ M
and Tn → T uniformly on C.

5This very useful statement is often referred to as “Schaefer Drei-Vier-Fünf”; see III.4.5 in H.H. Schaefer’s Topological
Vector Spaces, Springer Verlag

6A subset is called total if its linear span is dense in X
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Theorem 2.5.9 (Hahn-Banach). 7 Let M be a subspace of a complex vector space X, p a seminorm on
X, F : M → C linear, and |F (x)| ≤ p(x) for all x ∈ M . Then there exists µ : X → C linear such that
µ/M

= F and |µ(x)| ≤ p(x) for all x ∈ X.

Corollary 2.5.10. Every bounded linear map from a linear subspace M of a normed space X into C has
a bounded linear extension to X with the same norm.

Proof. Let F ∈ L(M, C). Then there exists M > 0 such that ‖F (x)‖ ≤ M ‖x‖ =: p(x) for all x ∈ M .
By the Hahn-Banach Theorem, there exists x∗

0 ∈ X∗ such that x∗
0/M

= F and |〈x, x∗
0〉| ≤ M ‖x‖ for all

x ∈ X . Thus, ‖x∗
0‖ ≤ ‖F‖. Since x∗

0 is an extension of F , we also have ‖F‖ ≤ ‖x∗
0‖. Thus ‖F‖ = ‖x∗

0‖.

Corollary 2.5.11. For all x0 in a normed space X there exists x∗
0 ∈ X∗ such that 〈x0, x

∗
0〉 = ‖x0‖ and

‖x∗
0‖ = 1.

Proof. Let M = {αx0 : α ∈ C}, F : M → C, F (αx0) := α ‖x0‖. Then F ∈ L(M, C), ‖F‖ = 1, and
F (x0) = ‖x0‖. Now the statement follows from the corollary above.

Corollary 2.5.12. Every x0 ∈ X can be viewed as an element in X∗∗; i.e., a vector x0 ∈ X can also be
viewed as a linear map x0 : X∗ → C, defined by x0(x∗) := x∗(x0) = 〈x0, x

∗〉 with the same norm; i.e.,
the Banach space norm of x0 is the same as the operator norm of x0 as an element of X∗∗.

Proof. Let x0 ∈ X . Then µx0 : X∗ → C defined by µx0(x∗) := x∗(x0) is linear and |µx0(x∗)| ≤ ‖x∗‖ ‖x0‖
for all x∗ ∈ X∗. Thus, ‖µx0‖ ≤ ‖x0‖. Since there exists x∗ ∈ X∗ with ‖x∗‖ = 1 and x∗(x0) = ‖x0‖ we
get that ‖µx0‖ = sup‖x∗‖≤1 |µx0(x∗)| = ‖x0‖.

Corollary 2.5.13. Every normed vector space X can be embedded in the Banach space X∗∗ and the com-
pletion of of the normed space X coincides with the closure of X in its bidual X∗∗.

Example 2.5.14. Let s be the vector space of all finite sequences (sn) with the sup-norm. Then the dual
of s is l1 and its bidual is l∞. Clearly, the completion of s is c0 which is also the closure of s in l∞.

Definition 2.5.15. Let X be a normed space. A subset Γ of X∗ is called a norming set for X if ‖x‖ =
supx∗∈Γ |〈x, x∗〉| for all x ∈ X.

Example 2.5.16. It follows from Corollary 2.5.12 that the dual unit sphere S∗ := {x∗ ∈ X∗ : ‖x∗‖ = 1}
is a norming set for X . Let x ∈ l∞ and Γ be the set of all unit sequences (∂i,n)i∈N, where ∂i,n denotes
the Kronecker symbol. Then Γ ⊂ l∗∞ is a norming set for l∞ since ‖x‖ = supi |xi| = supx∗∈Γ |〈x, x∗〉|.

7For a proof see, for example, H.L. Royden’s Real Analysis, Macmillan.
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2.6 Cauchy’s Theorem for Vector-Valued Analytic Functions

Definition 2.6.1. Let D ⊂ C be open, X a Banach space, and Γ ⊂ X∗ a norming set for X. A function
f : D → X is called analytic on D if

f ′(a) := lim
z→a

f(z) − f(a)
z − a

exists for all a ∈ D. The function f is called weakly analytic with respect to Γ if the functions 〈f, x∗〉 :
D → C defined by z → 〈f(z), x∗〉 are analytic on D for all x∗ ∈ Γ. The function f is called weakly
analytic if 〈f, x∗〉 : D → C is analytic on D for all x∗ ∈ X∗. The function f is locally bounded if
supz∈C ‖f(z)‖ < ∞ for all compact sets C ⊂ D.

Theorem 2.6.2 (Dunford). Let D ⊂ C be open, X a Banach space, and f : D → X. The following are
equivalent.

(i) f is analytic on D.

(ii) f is weakly analytic on D.

(iii) f is locally bounded and weakly analytic on D with respect to a norming set Γ of X.

Proof. Clearly, (i) implies (ii). Assume that (ii) holds. Let C be a compact subset of D and x∗ ∈ X∗.
Then there exists Mx∗ > 0 such that |〈f(z), x∗〉| ≤ Mx∗ for all z ∈ C. Considering the vectors f(z)
as linear maps in X∗∗ (see Corollary 2.5.12) and using the Principle of Uniform Boundedness 2.5.7 it
follows that there exists M > 0 such that ‖f(z)‖ ≤ M for all z ∈ C. Thus, (ii) implies (iii). We show
that (iii) implies (i). To show the existence of limz→a

f(z)−f(a)
z−a for a ∈ D we may assume that a = 0. For

h, k ∈ C \ {0} let

u(h, k) :=
f(h) − f(0)

h
− f(k) − f(0)

k
.

We have to show that for ε > 0 there exists δ > 0 such that ‖u(h, k)‖ ≤ ε whenever |h| ≤ δ and |k| ≤ δ.
Let r > 0 such that the sphere S := K2r(0) ⊂ D and let M := supz∈S ‖f(z)‖ = supz∈S,x∗∈Γ |〈f(z), x∗〉|.
By Cauchy’s integral formula 〈f(w), x∗〉 = 1

2πi

∫
|z|=2r

〈f(z),x∗〉
z−w dz for all w ∈ Kr(0) and x∗ ∈ Γ. Thus, for

h, k ∈ Kr(0) \ {0} and x∗ ∈ Γ

〈u(h, k), x∗〉 =
1

2πi

∫

|z|=2r

〈f(z), x∗〉
(

1
h

[
1

z − h
− 1

z

]
− 1

k

[
1

z − k
− 1

z

])
dt

= (h − k)
1

2πi

∫

|z|=2r

〈f(z), x∗〉
z(z − h)(z − k)

dt.

Thus, |〈u(h, k), x∗〉| ≤ |h− k|Mr2 for all x∗ ∈ Γ. Since Γ is a norming set for X we obtain that ‖u(h, k)‖ ≤
|h − k|Mr2 . This proves the claim.

Theorem 2.6.3 (Cauchy’s Theorem). If D ⊂ C is open, X a Banach space, γ : [α, β] → D a null-
homologous chain in D, f : D → X analytic, and a ∈ D \ γ[α, β], then

(i)
∫

γ f(z) dz = 0,

(ii) W (γ, a)f (n)(a) = n!
2πi

∫
γ

f(z)
(z−a)n+1 dz (n ∈ N0).
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Proof. Since f is continuous one can define the path-integrals. Now the statement follows from Cauchy’s
Theorem 2.4.2 for complex-valued functions; i.e., since 〈

∫
γ f(z) dz, x∗〉 =

∫
γ〈f(z), x∗〉 dz = 0 for all

x∗ ∈ X∗, we obtain that
∫

γ f(z) dz = 0. Similarly, one proves (ii).

Corollary 2.6.4 (Liouville’s Theorem). Let X be a Banach space and f : C → X. The following are
equivalent.

(i) f is bounded and entire.

(ii) f is constant.

Proof. If f is bounded and entire, then f ′(a) = 1
2πi

∫
|z−a|=R

f(z)
(z−a)2 dz = 1

2π

∫ 2π

0
f(w+Reit)

R2e2it Reit dt. Thus,
‖f ′(a)‖ ≤ const

R for all R > 0. Thus, f ′ = 0 and therefore, f is constant.

Corollary 2.6.5 (The Fundamental Theorem of Algebra). Every non-constant complex polynomial has at
least one zero in C.

Proof. Let p be a polynomial of degree n ≥ 1. Then p(z)
zn → cn as |z| → ∞. Thus |p(z)| ≥ 1

2cn|zn| for
|z| > R. Suppose p(z) 6= 0 for all z ∈ C. Then f := 1/p is entire and bounded. By Liouville’s Theorem
above, f is constant (which is a contradiction).

Corollary 2.6.6 (Weierstrass’ Convergence Theorem). Let D ⊂ C be open and X a Banach space. If
fn : D → X is a sequence of analytic functions which converges uniformly on each compact subset of D
towards a function f , then f is analytic and f ′

n → f ′ uniformly on compact subsets of D.

Proof. Clearly, f is continuous and for each rectangle R ⊂ D we have that 0 =
∫

R fn(z) dz →
∫

R f(z) dz.
Thus, z → 〈f(z), x∗〉 is locally Cauchy integrable for all x∗ ∈ X∗. By Morera’s Theorem 2.3.5, f is weakly
analytic. By Dunford’s Theorem 2.6.2, f is analytic. Let c ∈ D and choose ε̃ > ε > 0 such that the sphere
Kε̃(c) ⊂ D. Since fn(z)

(z−a)2 → f(z)
(z−a)2 uniformly for those z with |z − c| = ε̃ and a ∈ Kε(c), it follows from

Cauchy’s Integral Formula that

f ′
n(a) =

1
2πi

∫

|z−a|=ε̃

fn(z)
(z − a)2

dz → 1
2πi

∫

|z−a|=ε̃

f(z)
(z − a)2

dz = f ′(a)

uniformly for a ∈ Kε(c). Now, if K ⊂ D is compact, then K = ∪n
i=1Kεi(ci) and therefore f ′

n → f ′

uniformly on compact subsets of D.

Example 2.6.7. Since z → 1
nz = e−z ln n is entire and | 1

nz | ≤ 1
nc for all z with Rez ≥ c > 1, it follows from

the Weierstrass Convergence Theorem that the Riemann-Zeta function ζ(z) :=
∑∞

n+1
1

nz is analytic and
ζ ′(z) :=

∑∞
n+1

ln n
nz for all z with Rez > 1.

Corollary 2.6.8 (Mazur). A complex normed algebra which is a field is isomorphic to the complex field.

Proof. Let e denote the unit in X . Since X is a normed algebra, ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ X . In
particular, ‖e‖ ≥ 1. Assume that there exists x ∈ X such that x−λe 6= 0 for all λ ∈ C. Then the resolvent
f : λ → (x − λe)−1 is well-defined for all λ ∈ C. It is easy to see that f satisfies the resolvent equation

f(λ + h) − f(λ)
h

= f(λ + h)f(h)

for all λ, h ∈ C. Thus, f is entire if and only if f is continuous. Since

‖f(λ + h) − f(λ)‖ ≤ |h| ‖f(λ + h)‖ ‖f(λ‖ ,
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it follows that f is continuous if ‖f(λ + h)‖ is bounded for small h. Since

f(λ + h) = f(λ)[e − hef(λ)]−1 = f(λ)
∞∑

n=0

hnef(λ)n

for |h| < 1
‖f(λ)‖ , it follows that ‖f(λ + h)‖ ≤ 2 ‖f(λ‖ for |h| < 1

2‖f(λ)‖ . Thus, f is entire and f ′(λ) = f2(λ)
for all λ ∈ C. Since ‖f(λ‖ =

∥∥− 1
λ [e − 1

λx]−1
∥∥ =

∥∥− 1
λ

∑∞
n=0(

x
λ )n
∥∥ ≤ 2

|λ| if 2 ‖x‖ ≤ |λ|, it follows from the
continuity of f that f is bounded. Bt Louiville’s Theorem, f is constant. But then x−1 = f(0) = f(λ) =
limλ→∞ f(λ) = 0 and therefore ‖e‖ =

∥∥xx−1
∥∥ ≤ ‖x‖

∥∥x−1
∥∥ = 0, which is a contradiction. This shows

that the map λ → λe defines an isomorphism between C and X .

2.7 Power Series

Proposition 2.7.1. Let a = (an)n≥0 be a sequences in a Banach space X and

R(a) :=
1

lim supn→∞
n
√
‖an‖

.

Then
∑∞

n=0 anzn converges absolutely for |z| < R(a) and diverges for all |z| > R(a). Moreover, if b =
(bn)n≥0 is another sequence in X, then R(a + b) ≥ min(R(a), R(b)). If b is a complex sequence and
b ∗ a := (

∑n
i=0 bn−iai)n≥0 denotes the Cauchy product, then R(b ∗ a) ≥ min(R(a), R(b)).

Proof. If |z| < R := R(a) or lim supn→∞
n
√
‖an‖ = 1

R < 1
|z| , then there exists p < 1 such that n

√
‖an‖ ≤

p
|z| for all n ≥ n0. But then the power series converges absolutely since ‖anzn‖ ≤ pn. To prove that
the power series diverges for |z| > R, assume that the power series converges for some z ∈ C \ {0}.
Then ‖anzn‖ ≤ 1 for all n ≥ n0 or n

√
‖an‖ ≤ 1

|z| for all n ≥ n0. This shows that |z| ≤ R. To show
that R(a + b) ≥ min(R(a), R(b)) let |z| ≤ r < min(R(a), R(b)). Then

∑∞
n=0(an + bn)zn exists and thus,

R(a + b) ≥ r. If b is a complex sequence and |z| ≤ r < min(R(a), R(b)), then
∑∞

n=0 (
∑n

i=0 bn−iai) zn

exists since
∑

n ‖
∑

j+k=n bkaj‖rn ≤
∑

n

(∑
j+k=n |bk| ‖aj‖

)
rn =

(∑
j ‖aj‖ rj

)(∑
k |bk|rk

)
.

Theorem 2.7.2. Let a = (an)n≥0 be a sequences in a Banach space X with R(a) > 0. Then f(z) :=∑∞
n=0 anzn is analytic for |z| < R(a), f ′(z) :=

∑∞
n=1 nanzn−1, and an = 1

n!f
(n)(0).

Proof. Let C be a compact subset of the sphere KR(0) around the origin with radius R. Then C ⊂ Kr(0)
for some r < R. It follows that fN(z) :=

∑N
n=0 anzn converges uniformly on C. Now the claim follows

from the Weierstrass Convergence Theorem 2.6.6, and an = 1
n!f

(n)(0) is proved by induction.

Remark 2.7.3. Let f(z) =
∑∞

n=0 anzn be a power series with radius of convergence R = R(a). Assume
that the power series converges uniformly on the sphere KR(0). If R < ∞, then the power series converges
for all |z| ≤ R and f is continuous for |z| ≤ R. If R = +∞, then f is a polynomial.

Proof. Assume R < ∞. Then, for all ε > 0 there exists n0 such that ‖
∑m

k=n akzk‖ ≤ ε for all m > n ≥ n0

and all |z| < R. By continuity, the estimate holds for all |z| ≤ R. This proves the first statement. If
R = +∞, then ‖

∑m
k=n0

akzk‖ ≤ 1 for all m ≥ n0 and all z ∈ C. Thus ‖
∑∞

k=n0
akzk‖ ≤ 1 for all z ∈ C.

By Liouville’s Theorem 2.6.4,
∑∞

k=n0
akzk = 0.
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Theorem 2.7.4 (Abel’s Continuity Theorem). If f(z) =
∑∞

n=0 anzn converges for some z ∈ C, then
h(t) := f(tz) is continuous on [0, 1].

Proof. Define bn := anzn. Then h(w) :=
∑∞

n=0 bnwn converges for w = 1. Thus, h is analytic for
|w| < 1. We show that h(1) = limt↗1 h(t) and assume that h(1) =

∑∞
n=0 bn = 0 (otherwise consider

h̃(t) := h(t) − h(1)). Let ε > 0 and define cn :=
∑n

i=0 bi. Then ‖cn‖ ≤ ε/2 for all n ≥ n0. Using the

Cauchy product we obtain for all 0 ≤ t < 1, 1
1−th(t) =

(∑∞
k=0 tk

)(∑∞
j=0 bjt

j
)

=
∑∞

n=0

(∑n
j=0 bj

)
tn =

∑∞
n=0 cntn. Thus, ‖h(t)‖ ≤ ‖(1 − t)

∑n0
n=0 cntn‖ + (1 − t)

∑∞
n=n0+1 ‖cn‖ tn ≤ ε for all t0 ≤ t < 1.

Theorem 2.7.5. Let D ⊂ C be open, X Banach space, and f : D → X. The following are equivalent.

(i) f is analytic on D.

(ii) For all z0 ∈ D exist an ∈ X such that f(z) =
∑∞

n=0 an(z−z0)n whenever z is in a sphere Kε(z0) ⊂ D.

(iii) For all z0 ∈ D exist ε > 0 and an ∈ X such that Kε(z0) ⊂ D and f(z) =
∑∞

n=0 an(z − z0)n for all
z ∈ Kε(z0) .

Moreover, if one of the statements holds, then

an =
f (n)(z0)

n!
=

1
2πi

∫

|z−z0|=ε

f(z)
(z − z0)n+1

dz (n ≥ 0).

Proof. Clearly, (ii) implies (iii). If (iii) holds, then f is analytic by Theorem 2.7.2. It remains to be shown
that (i) implies (ii). Let z ∈ Kε(z0) ⊂ D. By Cauchy’s Theorem 2.6.3 and the uniform convergence of
∑∞

n=0

(
z−z0
w−z0

)n

for w ∈ C with |w − z0| = ε,

f(z) =
1

2πi

∫

|w−z0|=ε

f(w)
w − z

dw =
1

2πi

∫

|w−z0|=ε

1
w − z0

f(w)

1 − (z−z0)
w−w0

dw

=
1

2πi

∫

|w−z0|=ε

∞∑

n=0

(z − z0)n

(w − z0)n+1
f(w) dw

=
∞∑

n=0

(
1

2πi

∫

|w−z0|=ε

f(w)
(w − z0)n+1

dw

)
(z − z0)n.

Corollary 2.7.6. Let D ⊂ C be open, z0 ∈ D, X Banach space, and f : D → X analytic. Then there
exists a neighborhood V of z0 in D such that either f/V

= 0 or f(z) 6= 0 for all z0 6= z ∈ V .

Proof. Let z ∈ Kε(z0) ⊂ D. Then f(z) =
∑∞

n=0 an(z − z0)n. If an = 0 for all n ≥ 0, then f = 0
on Kε(z0). Otherwise let am be the first non-zero coefficient. Then f(z) =

∑∞
n=m an(z − z0)n = (z −

z0)m
∑∞

n=0 an+m(z − z0)n = (z − z0)mg(z). Since g is analytic and g(z0) = am 6= 0, it follows that there
exists a neighborhood V of z0 in Kε(z0) such that g(z) 6= 0 for all z ∈ V .

Corollary 2.7.7. Let D ⊂ C be a region, X Banach space, and 0 6= f : D → X analytic. Then N := {z ∈
D : f(z) = 0} has no accumulation point.
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Proof. Let Ω be the interior of the closed set N . Then Ω is open. Since f 6= 0, it follows that Ω 6= D.
Let z0 ∈ ∂Ω ∩ D. Because g := f/Ω = 0 it follows that g(n) = 0. Therefore, f (n)(z0) = 0 since f (n) is

continuous on D and thus f(z) =
∑∞

n=0
f (n)(z0)

n! (z − z0)n = 0 for z ∈ Kε(z0). This shows that z0 is in Ω,
the interior of N . Thus, Ω is closed. Since Ω is open and closed in D and ω 6= D, it follows that N has
empty interior. Now let z0 ∈ N . By the previous corollary, there exists a neighborhood V of z0 such that
V ∩ N = {z0}. Thus N has no accumulation points.

Corollary 2.7.8. Let D ⊂ C be a region, X Banach space, and f1, f2 : D → X analytic. If f1 and f2

coincide on a subset of D which has an accumulation point in D, then f1 = f2 on D.

Proof. The statement follows immediately from the previous corollary.

2.8 Resolvents and the Dunford-Taylor Functional Calculus

A linear mapping A : X ⊃ D(A) → X (X Banach space), where the domain D(A) is a linear subspace
of X , is called a linear operator on X .

A closed linear operator is a linear operator whose graph G(A) := {(x, Ax) : x ∈ D(A)} is closed in
X × X ; i.e., if xn ∈ D(A), xn → x, and Axn → y, then x ∈ D(A) and Ax = y.

On D(A) we consider the graph norm ‖x‖A := ‖x‖ + ‖Ax‖. The mapping γ : D(A) → G(A), γ(x) :=
(x, Ax) is an isometric isomorphism between [D(A)] := (D(A), ‖ · ‖A) and G(A) ⊂ X ×X , where X ×X
is endowed with the 1-norm. It follows that A is closed if and only if [D(A)] is complete (i.e., a Banach
space).

Recall that a linear operator is called bounded if D(A) = X and A is continuous; i.e., ‖A‖ := sup‖x‖≤1 ‖Ax‖ <
∞. By the Closed Graph Theorem, a linear operator A is bounded if it is closed and D(A) = X .

Let A be a linear operator on X . By

ρ(A) := {λ ∈ C : λI − A is bijective and (λI − A)−1 ∈ L(X)}

we denote the resolvent set of A and by

R : ρ(A) → L(X), λ → R(λ, A) := (λI − A)−1

the resolvent of A. The set σ(A) := C \ ρ(A) is called the spectrum of A.

Proposition 2.8.1. Let A be a linear operator on X. Then

(a) If ρ(A) 6= ∅, then A is closed.

(b) If A is closed, then ρ(A) := {λ ∈ C : λI − A is bijective}.

Proof. (a) Since A is closed if and only if λI − A is closed for some (all) λ ∈ C, we can assume that
0 ∈ ρ(A). Let xn ∈ D(A), xn → x, and Axn → y. Since A−1 is continuous, xn = A−1Axn → A−1y. Thus,
x = A−1y ∈ D(A) and Ax = y.
(b) If a linear operator is closed and injective, then it is easy to see that its inverse is well defined and
closed. Thus, if λI −A is bijective, then its inverse is closed and everywhere defined. By the closed graph
theorem, (λI − A)−1 ∈ L(X).
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Theorem 2.8.2. Let A be a closed linear operator on X and λ0 ∈ ρ(A). If |λ − λ0| < 1/‖R(λ0, A)‖, then
λ ∈ ρ(A) and

R(λ, A) =
∞∑

n=0

(−1)nR(λ0, A)n+1 (λ − λ0)
n .

In particular, ρ(A) is open, σ(A) is closed, the resolvent R : λ → R(λ, A) is analytic on ρ(A),

R(n)(λ0, A) = (−1)nn!R(λ0, A)n+1 (n ∈ N0),

and dist(λ0, σ(A)) ≥ 1/‖R(λ0, A)‖.

Proof. Recall that if T ∈ L(X) with ‖T‖ < 1, then (I − T )−1 exists and (I − T )−1 =
∑∞

n=0 T n. One
has λI − A = (λ − λ0)I + λ0I − A = [I − (λ0 − λ)R(λ0, A)](λ0I − A). Hence R(λ, A) = R(λ0, A)[I −
(λ0 − λ)R(λ0, A)]−1 = R(λ0, A)

∑∞
n=0(λ0 − λ)nR(λ0, A)n exists whenever |λ − λ0|‖R(λ0, A)‖ < 1. Now

the other statements follow from the results of the previous section.

As the first derivative operator on C[0, 1] shows, there are closed operators with empty resolvent set. This
can not happen if A is bounded.

Proposition 2.8.3. If A ∈ L(X), then σ(A) is non empty and compact. Moreover,

sup |σ(A)| = lim
n→∞

‖An‖1/n ≤ ‖A‖

and R(λ, A) =
∑∞

n=0
1

λn+1 An for |λ| > sup |σ(A)|.

Proof. By Proposition 2.7.1, R(λ) :=
∑∞

n=0
1

λn+1 An converges for |λ| > lim supn→∞ ‖An‖1/n. It can
be easily verified that R(λ)(λI − A) = (λI − A)R(λ) = I . Thus, R(λ) = R(λ, A), D := {λ ∈ C :
|λ| > lim supn→∞ ‖An‖1/n} ⊂ ρ(A), and sup |σ(A)| ≤ lim supn→∞ ‖An‖1/n. By Theorem 2.7.5 it follows
that R(λ, A) =

∑∞
n=0

1
λn+1 An converges for all |λ| > sup |σ(A)|. Thus the radius of convergence of

R(λ) is less or equal to sup |σ(A)|; i.e., lim supn→∞ ‖An‖1/n ≤ sup |σ(A)|. This shows that sup |σ(A)| =
lim supn→∞ ‖An‖1/n ≤ ‖A‖. We will show next that sup |σ(A)| ≤ lim infn→∞ ‖An‖1/n. The factorization
(λnI − An) = (λI − A)Pn(A) = Pn(A)(λI − A) shows that if (λnI − An) has a bounded inverse, so will
(λI − A). Thus, if λ ∈ σ(A), then λn ∈ σ(An) and therefore by the above considerations, |λ|n ≤ ‖An‖.
This shows that sup |σ(A)| ≤ ‖An‖1/n for all n ∈ N or sup |σ(A)| ≤ lim infn→∞ ‖An‖1/n.

Since R(λ, A) =
∑∞

n=0
1

λn+1 An for |λ| > 2‖A‖, it follows that ‖R(λ, A)‖ ≤ 2
|λ| for |λ| ≥ 2‖A‖.

Suppose that the spectrum of A were empty. Then the resolvent is an entire function which is bounded
(by continuity) on the compact set {λ ∈ C : |λ| ≤ 2‖A‖} and bounded on the complement {λ ∈ C : |λ| >
2‖A‖}. By Liouville’s Theorem, R(λ, A) = const for all λ ∈ C. Since R(λ, A) → 0 as λ| → ∞, it follows
that R(λ, A) = 0. But then I = (λI − A)R(λ, A) = 0, which is a contradiction. Thus, σ(A) 6= ∅.

If A ∈ L(X), then we denote bt F(A) the family of all complex valued functions f which are analytic on
some neighborhood of σ(A). The neighborhood need not be connected and can depend of f ∈ F(A). Let
f ∈ F(A) and let U be a neighborhood of σ(A) with a piecewise smooth boundary such that U ∪ δU is
contained in the domain of analyticity of f . Then

f(A) :=
1

2πi

∫

δU

f(λ)R(λ, A) dλ ∈ L(X)

and the definition of f(A) depends only on f and not on the domain U (by Cauchy’s theorem).
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Theorem 2.8.4 (Dunford Functional Calculus, Spectral Mapping Theorem). If A ∈ L(X), f, g ∈ F(A),
and α, β ∈ C, then

(a) αf + βg ∈ F(A) and αf(A) + βg(A) = (αf + βg)(A).

(b) f · g ∈ F(A) and f(A)g(A) = (fg)(A).

(c) If f(λ) =
∑∞

n=0 anλn for all λ in some neighborhood of σ(A), then f(A) =
∑∞

n=0 anAn.

(d) f(σ(A)) = σ(f(A)).

2.9 The Maximum Principle

Let D ⊂ C be a region and f : D → C analytic. If K ⊂ D is a compact region with interior K0, then
Cauchy’s integral formula

f(z) =
1

2πi

∫

∂K

f(w)
w − z

dw (z ∈ K0)

shows that the values of the function f on the boundary ∂K determine f in the interior K0. In this
section we collect some consequences of this crucial fact.

Lemma 2.9.1. Let f : D → C be analytic and Kr(c) ⊂ D. If inf{|f(z)| : z ∈ ∂Kr(c)} > |f(c)|, then there
exists z0 ∈ Kr(c) such that f(z0) = 0.

Proof. Assume that f(z) 6= 0 for all z ∈ Kr(c) := {z : |z − c| < r}. It follows from |f(z)| ≥ |f(c)| for
z ∈ ∂Kr(c) that f(z) 6= 0 for all z ∈ Kr(c). By a standard compactness argument one obtains that
f(z) 6= 0 for all z ∈ Kr̃(c) ⊂ D with r̃ > r. Define g(z) := 1

f(z) for z ∈ Kr̃(c). Then g is analytic and

1
|f(c)|

= |g(c)| = | 1
2πi

∫

|z−c|=r

g(z)
z − c

dz| ≤ sup
{z:|z−c|=r}

|g(z)| =
1

inf{z:|z−c|=r} |f(z)|
,

or, inf{z:|z−c|=r} |f(z)| ≤ |f(c)|, which is a contradiction.

Theorem 2.9.2. Let f : D → C be analytic and not constant. If D is a region, then f(D) is a region.

Proof. Since continuous images of connected sets are connected, one has to show that f(D) is open. Let
c ∈ D. Since f is not constant, there exists Kr(c) ⊂ D such that f(z) 6= f(c) for all z ∈ ∂Kr(c) (otherwise
there would exist a sequence zn → c such that f(zn) = f(c) for all n ∈ N, and this would imply that
f(z) = f(c) for all z ∈ D). Define

δ := inf
z∈∂Kr(c)

|f(z) − f(c)| > 0.

Let |b − f(c)| < δ/2. Then

|f(z) − b| ≥ |f(z) − f(c)| − |f(c) − b| > δ/2

for all z ∈ ∂Kr(c). Therefore,

inf
z∈∂Kr(c)

|f(z) − b| ≥ δ/2 > |f(c) − b|.

It follows from the lemma above that there exists z0 ∈ Kr(c) such that b = f(z0); i.e., Kδ/2(f(c)) ⊂
f(Kr(c)) ⊂ f(D). Hence, f(D) is open.
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Example 2.9.3. Let f(z) := z2. Then f(K1(0)) = K1(0) is open in C, but f(−1, 1) = [0, 1) is not open in
R.

Corollary 2.9.4. Let D ⊂ C be a region and f : D → C be a scalar-valued analytic function. If |f | has a
minimum at c ∈ D, then f(c) = 0.

Proof. Suppose that f(c) 6= 0. Then there exists an open neighborhood around f(c) which is in the region
f(D). Thus, there exists z ∈ D such that |f(z)| < |f(c)|, which is a contradiction.

Example 2.9.5. It is standard folklore in mathematics that classical complex analysis extends from scalar-
valued functions to Banach space valued functions. This handy statement is true and useful if one keeps
in mind that there are many exceptions to the rule. Examples of such exceptions are the statements
above. In general, they do not hold if f : D → X , X a Banach space. To see this, let X := C2 with norm
‖(z1, z2)‖ := max(|z1|, |z2|) and consider f(z) := (1, z). Then ‖f(z)‖ = 1 for |z| ≤ 1 and ‖f(z)‖ = |z| for
|z| ≥ 1. Also, the image of the unit sphere contains no open subset of C×C; i.e., f does not map regions
into regions.

Theorem 2.9.6 (Maximum Principle). Let D ⊂ C be a region and f : D → X analytic. Then the analytic
landscape z → ‖f(z)‖ has no maximum on D unless it is constant on D.

Proof. (1) First, we prove the claim for X = C. Assume that f is not constant and Kr(c) ⊂ D. Since
U := f(Kr(c)) is a region in C and f(c) ∈ U , it follows that f(c) is in the interior of U . Thus, there exists
z ∈ Kr(c) such that |f(z)| > |f(c)|.
(2) Suppose that there exists c ∈ D such that ‖f(z)‖ ≤ ‖f(c)‖ for all z ∈ D. Choose x∗

0 ∈ X∗ with
‖x∗

0‖ = 1 such that 〈f(c), x∗
0〉 = ‖f(c)‖. Then h : z → 〈f(z), x∗

0〉 satisfies

|h(z)| ≤ ‖x∗
0‖‖f(z)‖ = ‖f(z)‖ ≤ ‖f(c)‖ = |h(c)|

for all z ∈ D. By (1), h is constant on D. Thus,

‖f(z)‖ ≤ ‖f(c)‖ = h(c) = h(z) ≤ ‖f(z)‖,

or ‖f(z)‖ = ‖f(c)‖ for all z ∈ D.

We remark that if D ⊂ C is a region and f : D → C is analytic, then f is constant if and only if |f | is
constant. This does not hold in Banach spaces as the example f(z) := (1, z) (z ∈ K1(0)) illustrates.

Corollary 2.9.7. Let f : D → X be analytic on a bounded region D ⊂ C and continuous on D. Let
M := max{‖f(z‖ : z ∈ ∂D}. Then either ‖f(z)‖ = M for all z ∈ D, or ‖f(z)‖ < M for all z ∈ D.

Proof. Since continuous function attain there maximum on compact sets, there exists a ∈ D such that
‖f(z‖ ≤ ‖f(a)‖ for all z ∈ D. If a ∈ D, then it follows from the Maximum Principle that ‖f(z)‖ = ‖f(a)‖
for all z ∈ D and thus for all z ∈ D. In this case, ‖f(z)‖ = M for all z ∈ D. If a ∈ ∂D, then M = ‖f(a)‖.
If there exists z0 ∈ D such that ‖f(z0)‖ = ‖f(a)‖, then ‖f‖ is constant on D and thus on D. Otherwise
‖f(z)‖ < M for all z ∈ D.


