Number Theory 1998
Part 1. Factorization
0. Introduction.

Fermat’s Last Theorem
Fermat numbers F,, = 22" + 1 mistakenly thought to be prime:

Fy=3,F =5,F, = 17, F3 = 257, F;, = 65537

are prime but
Fy =4 294 967 297 is divisible by 641 — calculated by Euler
Euler's conjecture: no nth power is a sum of fewer than n nth powers. Counterexamples:
(1964) by computer search 1445 = 275 4 84° + 1105 + 1355,
(1987) by using elliptic curves arithmetic 20615673* = 2682440* + 15365639* + 18796760
The Goldbach conjecture (1742) — verified up to 100 000.
Twin prime numbers conjecture.
Odd perfect numbers query.
Riemann hypothesis.

1. Divisibility in Z.

d € Z,alb,alc = a|(b+ c),a|db. Denote I, = {b € Z: a|b}.
Call a subset I of Z an ideal if

(1) bcel=b+cel,

(2)bel.deZ=dbel.

So I, is an ideal.

Every non-zero ideal I of Z is equal to some I,,. Indeed, let a be the minimal positive element
of T and let b € I. Then b = ca + q with ¢,¢c € Z, 0 < ¢ < a (division algorithm). Since
g = b+ (—c)a belongs to I by (1) and (2), it is zero. Hence all elements of I are divisible by a.
On the other hand, all numbers divisible by a belong to I by property (2). Thus I = I,.

The number a is called a generator of 7, [ is called a principal ideal. There are two choices for

a generator of a non-zero ideal: a or —a.

For non-zero a,b the property a|b (b is divisible by a, a divides b) is equivalent to the property
I, D I (I is contained in I, I, contains I;). From arithmetic point of view instead of working
with numbers we can work with ideals.

Put (¢) =aZ =1,is a # 0, (0) = 04 = {0}.

Diagramme of ideals of Z.

For two ideal I and J define

INd={a:a€l,a€ J}, I+J={a+b:acl,be J}.

Then I'NJ and I + J are ideals.

e = LCM(a,b) is the positive generator of I, N I,. Indeed, I, C I,,1Iy, so I, C I, N I. If
I, NI, =1, then alc,blc, so elcand I, NI, C I.. Thus, I, = I, N I;.

d = GCD(a, b) is the positive generator of I, + Ij. Indeed, if Iy = I, + I, then f|a,b, so f|d
and Iy D I;. On the other hand, Iy D I,,1;, 50 I3 D I, + I,. Thus, Iy = I, + I.
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Linear representation of GCD. If d =GCD(a, b), then there are m, n € Z such that d = ma+nb.

Recall that a, b are relatively prime if their GCD is 1. Hence a, b are relatively prime iff I,+1, = Z
iff there are m,n € Z such that ma + nb = 1.

Denote by IJ the ideal generated by ab : a € I,b € J. Then I,I, = I,,. We get I,I, =
(I VL) (Io + Ip) = L.

Prime numbers (in Z): those divisible by exactly four different numbers. Usually one considers

positive prime numbers. If ¢ is not divisible by a prime number p, then p, c are relatively prime.
An ideal I is called prime if it doesn’t contain 1 and for every a,b whenever ab € I at least

one of @, bis in 1.

A number p is prime iff the ideal I, is prime. Indeed, let p be prime. If ab € I, then plab. If

p fa, then a,p are relatively prime, so there are m,n € Z such that ma + np = 1. Then p divides
mab + npb = b. So I, is a prime ideal. If I, is prime, and p = rq, then rq € I, sor € I, or
q € Ip. In the first case p|r and r = %p, in the second case p|q and ¢ = £p, so p is prime.

Units in Z: 1, —1. An ideal I, is improper (coincides with Z) iff a is a unit.

Factorization. Every non-zero integer is a product of a unit and positive powers of positive
prime numbers; the prime numbers and their powers are uniquely determined.

Indeed, if @ isn’t prime, then a = a1a2 where |a1],|az| < |a|. Apply induction on | |.

Thus, every proper non-zero ideal of Z is the product of prime ideals.

2. Euclidean domains.
A ring A is called an integral domain if for every a,b € A
ab=0=>a€A or beA.

For example, Z, any field F', the polynomial ring F/[X] over a field F' are integral domains.

A ring A is called an Euclidean domain (ED) if A is an integral domain and there is a function
A: A\ {0} — {0,1,2,...}, such that for every a € A and every non-zero b € A there are ¢,q € A
such that

a="bc+q and either =0 or A(q) < A(b)

(the division algorithm).

For example Z is an ED, just set A(a) = |a| and use the usual division algorithm.

The ring F[X] is an ED with respect to A(f(X)) = deg(f).

Another important example of an ED is the ring of Gaussian integers Z[i] which consists of
a+bi, a,b € Z. It is a commutative ring with unity. Since Z[i] C C, it is an integral domain.
Define \: Z[i] — {0,1,2,...} by M(a + bi) = |a + bi|?> = a® + b%. Clearly, X\((a + bi)(c + di)) =
Aa + bi)A(c+ di). For « = a+bi and § = c+ di # 0 consider

a/B = (a+bi)/(c+di) = (a+bi)(c—di)/(c> +d*) = m +ni
with rational m,n. Let e, f be integers which satisfy the property |m —e|,|n — f| < 1/2. Put

vy=m+mniand 6 = a — (7.
We claim that A(6) < A(8). Indeed,

A(8) = la = P> = |B*|e/B = +I* = M(B) /B — [

and |a/B -2 = (m —e)?> + (n — £)? < (1/2)2 + (1/2)? < 1, thus A(6) < A(B).
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In the same way as in section 1 we define ideals of a ring A. A principal ideal (a) = aA is an
ideal generated by one element.

In general denote by (ai,...,a,) the ideal generated by the elements a1, ...,a,, ie {c1a1 +
-~ +cpay ¢ € A}, Then (a1,...,a,) = (a1) +---+ (a,) = 1A+ --- + a, A.

For ideals I, J of A define

INJ={acJacld}, ,J+J={a+b:aclbeJ}, IJ={> ab}.
k=1

Note that the ideal IJ is generated by all elements ab with a € I,b € J.

A ring A is called a principal ideal ring (PID) if it is an integral domain and every ideal of A is
principal.

Z is a PID. EXAMPLE of non-PID: Z[X]. Indeed, the ideal generated by 2 and X isn’t principal
(a polynomial dividing simultaneously 2 and X, is +1, the ideal generated by +1 is different from
(2,X)).

THEOREM. Every Euclidean domain is a principal ideal domain.

Proof. Let I be a non-zero ideal of A. Consider min{A(a) : a € I\ {0}}. Clearly it is achieved
on some element b of I. We claim that I = (b). Since (b) C I, we need to check the inverse
inclusion. Let a be an element of I. Write a = bc + g. Note that ¢ = a + b(—c) belongs to I. If
A(q) < A(b), then we would get a contradiction with the definition of b. Thus, ¢ = 0 and a € (b),
so I C (b).

As a corollary we deduce that every ideal of K[X] is principal. Since Z[X] isn’t a PID, it isn't
an ED.

Therefore the ring of Gaussian integers Z[i] is an ED and a PID.
3. Divisibility in integral domains.

Let A be an integral domain. Let a,b € A and b # 0. We write bla (b divides a) if there is
¢ € A such that a = be, or equivalently, a € (b), or equivalently (a) C (b). b is called a divisor of
a.

If bla, d|c, then (bd)|(ac).

An element u € A is called a unit of A if
Note that v = u~?! is then a unit of A.

u is a unit iff (u) = A.

For two units v,u € A the product uv is a unit, since (uv)|1.

The group of units of A is denoted by U(A).

EXAMPLES: U(Z)={1,-1}, U(Q) =Q* =Q\ {0}, U(Z[i])={1,-1,4,—i}.

Two non-zero elements a,b € A are said to be associated a ~ b if there is a unit u € A such
that a = bu.

a ~ biff (a) = (b), so the map

1, or equivalently, there is v € A such that uv = 1.

A\ {0}/ ~— principal ideals of A, a— (a)

is injective.
Properties: a ~ a; a~b=b~ua; a~bb~c=a~c



a ~ 1iff (a) = Aiffa € U(A).

An element d € A is called a GCD of non-zero a,b if d|a,d|b and every common divisor ¢ of
a,b divides d. There are rings where for some a,b their GCD doesn’t exist! If GCD(a, b) exists,
then it is defined up to a unit.

Non-zero elements a, b are called relatively prime if every common divisor of them is a unit.

If d =GCD(a, b) exists, then a/d,b/d are relatively prime.

A non-zero element p € A\ U(A) is called irreducible (primitive) if any divisor of p is either a

unit or is associated with p.
Properties of irreducible elements:
(1) if p = ab then either a ~ p or b~ p;
(2)ifp=aband a € (p), thena ~p,b~1;
(3) if p divides an irreducible element ¢, then p ~ ¢;
(4) for every a € A which isn't divisible by p GCD(a, p) exists and is a unit.

PROBLEM: to factorize elements of A into a product of irreducible elements.
4. PID is a unique factorization domain.

Let A be a PID.

LEMMA 1. Every two non-zero elements a,b in A have a GCD.

Proof. Consider the ideal (a,b). It is principal, so there is d € A such that (d) = (a) + (b).
Let d = aa + bB with appropriate o, 3 € A. Since (d) D (a), (d) D (b) we get d|a,d|b. If c|a,c|b,
then c|(aa + bf), so c|d.

In particular, a, b are relatively prime iff (a,b) = A.

LEMMA 2. Let a,b be relatively prime and let blac. Then b|c.

Proof. Since (a,b) = A, there are o, 3 € A such that ac+ b8 = 1. Then (ac)a+b(cB) =cis
divisible by b.

Recall that a proper ideal I of A is called prime if whenever ab € I either a or b belongs to I.
A proper ideal I is called maximal if it isn't contained in any strictly larger proper ideal of A. In
other words, every ideal J between I and A coincides with either I or A.

Every maximal ideal I is prime: if a € I, then consider the ideal aA + I. It is strictly larger
than I, so aA+1=A. Thenl=ae+cwithe€ A, ce€l. Soifabe I, then b=abe+bce 1.

In general, a prime ideal isn’t necessarily maximal. In principal ideal domains non-zero prime
ideals are maximal as the following lemma shows.

LEMMA 3. Let A be a PID. Let p be a non-zero element of A The following conditions are
equivalent

(1) p is irreducible;

(2) the ideal (p) is prime;

(3) for every nonzero a,b € A if p divides ab then p divides either a or b;

(4) the ideal (p) is maximal.

Proof. (1)=(2): Let p be irreducible. Then (p) is a proper ideal, since p isn't a unit. Let
ab € (p). If a & (p) then by property (4) of irreducible elements GCD(a, p) is a unit. Hence there
are «, 8 € A such that aa + Bp = 1. Multiplying by b we deduce that aab + Bpb = b is divisible
by p, i.e. b € (p). Thus, (p) is prime.

(2)=(3): Let (p) be prime. If p divides ab, then ab € (p), so either a € (p) (and p divides a)
or b € (p) (and p divides b).
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(3)=(4): if (p) is contained in an ideal of A, say (a), then p = ab for some b € A. Then either
p divides a (and since a divides p we deduce a ~ p, (a) = (p)) or p divides b (and then b ~ p,
a~1,(a)=(1)=A).

(4)=(1): Let a|p. Then (p) C (a). Since (p) is maximal, either (a) = (p) (and a ~ p) or
(a) = A (and a is a unit).

REMARK. By induction, if p is irreducible and p|a; ... a,, then p divides one of a;.

A ring A is called a unique factorization domain if every non-zero element a of A is a prod-

uct up;...p, of a unit u and irreducible elements py,...,p, and if a = vqy...qn is another
factorization, then m = n and up to permutation p1 ~ q1,...,Pn ~ ¢p.

THEOREM. Every principal ideal domain is a unique factorization domain.

Proof. Existence:

Let a be a non-zero element of A which isn't a unit. Then the ideal (a) is proper. Consider all
ideals of A which contain (a). Let (p) be a maximal ideal containing (a). Then p is irreducible by
Lemma 3 and p|a. Put a = pa;. Since p isn’t a unit, the ideal (a) strictly includes (a).

If a1 isn’t a unit, then find an irreducible element p; and factorization a; = pias and so on.
Assume that each subsequent a,, isn’t a unit. Put ag = a. Then we get an infinite chain of ideals
(ag) C (a1) C (az) C ... with strict inclusions. Consider the set I which consists of finite linear
combinations with coefficients from A of a,,, ie

I= {Z crag - only finitely many ¢ are different from zero} .

I is an ideal which contains every (a,). Let I = (b). Then b is a finite sum ZZ:O exak, ey € A.
b, ie (b) C (a;). Thus, (b) = (a;). Then (b) = (a;) C (a;4i) C (b)
for i > 1, and therefore (a;) = (ay44) for ¢ > 1, a contradiction.

Note that a;|ay for k < I, so a;

Thus, a, is a unit for some n. Then a = a,pp1...pn_1 IS a required factorization of a.

Uniqueness:

If @ =wupy...pn = vq1-..qm, then py divides vqy ... g, SO by Remark p; divides one of ¢;.
Without loss of generality assume that p; divides ¢;. However, g¢; is irreducible, so p; is associated
with g1, g1 = prw. Now a/p; = ups ...p, = VWQs ... gp,. Continue and deduce that m = n and
up to a permutation ps ~ qa,...,Pn ~ qn.

5. Euclidean algorithm.

Let A be an ED. Given elements a,b € A, b # 0 make a repeated application of the division
algorithm

a=bg + 71, 11 # 0,A(r1) < A(D),
b=riqs+ 712, 72 # 0, A(1r2) < A(r1),

Tn—1= TnQn+1 + Tntl, Tnt1 7é 0, )‘(Irn-l-l) < )\(’l"n),
Tn = Tn+1qn+2-

Claim: r,4+1 =GCD(a,b).

Proof: r,41|rn = Thnt1|rn_1 = -+ = rpt1|b = rp41a.
If c|a, c|b, then c|ry = -+ = c|rp41.



COROLLARY 1. Linear representation of GCD in Euclidean domains: start with 7,41 =
Tn—1 — Tnqn+1, then substitute 7, = r,_o — Tn—19n, SO Tpn41 = Tp—1 — ("'n—z - Tn—l‘]n)‘]n+1 =
Tn—1(1+ gn@n+1) — Th—2@n+1 and continue, eventually getting 7,11 = aa + b with o, € A.

COROLLARY 2. Linear equations over ED: to solve an equation aX + bY = ¢ first find
d =GCD(a,b)= aa + @b using the Euclidean algorithm. If d /¢, the equation doesn’t have
solutions. If d

¢, then o = (¢/d)a,yo = (¢/d)f is a solution and all solutions are given by
x = o+ tb/d,y = yo — ta/d where t runs over A.

Proof: if az+by = ¢, then a(z —z¢) = —b(y —yo). Since A is a PID and a/d, b/d are relatively
prime, from Lemma 1 of the previous section and the equality (a/d)(z — zo) = —(b/d)(y — yo)
we deduce that z — z is divisible by b/d. Put z — zo = (b/d)t, then y = yo — ta/d. Clearly
x =y +tb/d,y = yo — ta/d is a solution.



Part 2. Congruences

Still all rings are commutative with unity.
1. The quotient ring.

Definition. Let I be an ideal of a ring A. For an element a € A the set
a+I={a+i:1€1}

is called a coset of I in A; the element a is called a representative of the coset a + I. Sometimes
the coset a + I is denoted by @.
Note that if a — b € I, then

a+I={a+i:i€l}={a+(b—a+i):i€l}=0b+1

Define an equivalence relation: a ~ bif a—b € I. Then cosets of I in A are precisely equivalence
classes of this relation.

Denote the set of all cosets of I in A by A/I.

Definition. For two cosets a + I and b+ I define

e+ D)+ b+1)=(a+b)+1I, (a+I)(b+1I)=0ab+1.

Let's check correctness of this definition, Let ' + 1 = a+ I and & + T = b+ I, then
(+D)+ W +I)=(a'+b)+I = (a+b)+1, since (a'+bV)—(a=b) =a'—a+b —-be I+I CI;
and (/! + (V' + 1) =a' V' + 1 =ab+1,sincead’d —ab=a'(t/ —b)+bla—d)eI+1CI.
Thus, the sum and the product of two cosets doesn’t depend on the choice of representatives.

Now one can show that all axioms of a commutative ring are satisfied for the set of all cosets
with respect to the addition and multiplication defined above. For example,

((a+I)+(+1))(c+I) = (a+b+I)(c+I) = (a+b)e+I = ac+I+be+I = (a+I)(c+I)+(b+I)(c+I).

The unity of A/T is the coset 1+ I, the zero of A/I is the coset I =0+ 1.

The ring A/I is called the quotient (factor) ring of A modulo I.

EXAMPLE. Let n be a non-zero integer. If n = £1, then the ideal nZ coincides with Z and
Z /nZ consists of one element zero. If n isn’t a unit of Z, then first notice that nZ = —nZ. So

we can assume n > 1. The ring Z/nZ consists of n cosets
0=0+nZ=nZ,1=1+nZ,....,.n—1=(n—1)+nZ.

The sum of @ and b is a + b = € where c is the remainder of a + b modulo n; the product of @ and
b is ab = d where d is the remainder of ab modulo n.

LEMMA. A proper ideal I is prime iff the quotient ring A/I is an integral domain. A proper
ideal I is maximal iff the quotient ring A/I is a field.

Proof. Let I be prime. Let ab+ 1 = (a+1I)(b+1I)=0+1 = 1. It means that ab € I. Hence
eithera € Tandsoa+I=0+1,orbeIandsob+I=0+1. Thus, A/Iis an integral domain.

Let A/I be an integral domain. If ab € I, then (a+I)(b+I)=ab+1=1=0+1I, so either
a+I=0+Torb+1=0+1. Inthe first case a € I, in the second case b € I. Thus, I is a
prime ideal.



Let I be maximal. If a + 1 # 0+ I = I, then a ¢ I. Hence the ideal (a) + I is strictly larger
than I, so (a) + I = A. Therefore there is b € A, ¢ € I such that ab+ ¢ = 1. We deduce that
(a+1I)(b+1I)=(1—c)+I=1+1. So the coset a+ I is invertible in A/I. Thus, every non-zero
coset is invertible in A/I, i.e. A/I is a field.

Let A/I be a field. Assume that I C J for an ideal J of A. Let a € J\ I. Then the coset
a + I is invertible in A/I, so there is b+ I such that (a + I)(b+ 1) =ab+ 1 =1+ 1. In other
words, 1 € (a) + I C J. Hence J = A and T is maximal.

EXAMPLE. The ring Z/nZ is a field iff nZ is a prime ideal of Z iff n is prime. Thus, we have
prime fields
Fy =727, ¥3=7/3Z,..., F,=Z[pZ,...

The finite field I, consists of p elements 0,...,p — 1.
The quotient ring Z/nZ isn't a field if n isn’t prime. Moreover, Z/nZ isn't an integral domain
if n =mn1ne, 1 <ni,ne <mn,isn’t prime: ning =n = 0, ny,ny # 0.

Definition. For two rings A and B the map
ffA— B
is called a ring homomorphism if for every a1,a5 € A

flar +a2) = f(a1) + f(a2), f(a1a2) = f(a1)f(a2)

and f(14) = 1p where 14 is the unity of A, 1p is the unity of B.
EXAMPLES:
1) If A is a subring of B, then the map ¢g: A — B is a ring homomorphism.
2) If I is a proper ideal of A, then the map h: A — A/I, a — a + I is a ring homomorphism.

The kernel of f denoted by ker(f) is the set {a € A: f(a) = 0}.

The kernel of fis {0} iff f is injective.

The image of f denoted by im(f) is the set {b € B : there is a € A such that b = f(a)}. So
im(f) = f(4).

im(f) = B iff f is surjective.

EXAMPLES:

in 1) ker(g) = {0},im(g) = A; in 2) ker(h) = I,im(h) = A/I.

Two rings are called isomorphic if there is a ring homomorphism between them which is bijective.

LEMMA. The kernel ker(f) is an ideal of A; the image im(f) is a subring of B.

Proof. Let a,b € ker(f). Then f(a+b) = f(a)+ f(b) =0, so a+b € ker(f). If c € A, then
flac) = f(a)f(c) =0, so ac € ker(f). Thus, ker(f) is an ideal of A.

Let b = f(a) and d = f(c¢). Then b—d = f(a —¢),bd = f(ac),1p = f(14), so im(f) is a
subring of B.

THEOREM. Homomorphic image im( f) is isomorphic to the quotient ring A/ ker(f).

Proof. Define a map f’: A/ ker(f) — im(f) by the rule f'(a +ker(f)) = f(a). Then f'is a
ring homomorphism and f’ is surjective. If f'(a + ker(f)) =0, then f(a) =0, so a € ker(f) and
a+ker(f) =0+ ker(f). Thus, f’ is injective. We deduce that f’ is the required isomorphism.

In other words every ring homomorphism f: A — B is the composition if h: A — A/I, the
isomorphism A/I — f(A) and the imbedding g: f(A) — B.

2. The product of rings and Chinese remainder theorem.
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Definition. For two rings A, B define their product A x B as the set of all pairs (a,b) with
addition (a,b) + (¢,d) = (a + ¢, b+ d) and multiplication (a,b)(c,d) = (ac,bd). Hence A x B is
a commutative ring with unity (1,1) and zero (0, 0).

Similarly define the product of several rings.

CHINESE REMAINDER THEOREM. Let n1,...,n; be integers > 1 such that every two n;, n;
are relatively prime for i # j. Denote n = nj...nyg. Then the quotient ring Z/nZ is isomorphic
to the product of the quotient rings Z/n1Z X --- X Z[nyZ .

Proof. Consider a map

[Z—Z)Z % - X L[ngZy, a— (a+nZ,...,a+ngZ).
It is a ring homomorphism, since f(1) =1,

fla+b)=(a+b+mZ,...,a+b+nyZ)
=(a+mZ,...,a+nZ)+ (b+ nZ,...,b+ngZ) = f(a) + f(b)

and similarly f(ab) = f(a)f(b). Its kernel consists of a € Z for which a + n1Z = n1Z, ...,
a+ngZ =nyZ,ie. a € MZ,...,€ ngZ, i.e. nila,...,ngla. Since the prime divisors of n; are
a, then f(a) = 0. Thus, ker(f) = nZ.

Now let’s prove f is surjective. Let (a1 +n1Z,...,a; + niZ) be an element of Z/nyZ x - - - X

distinct, we deduce that n|a. Conversely, if n

Z/nyZ. Since n; and n/n; are relatively prime for every i = 1,...,k we deduce that there are
b;, c; such that

bin; + c,-n/n,- =1.
Consider

m
a= E a;cin/n; = ajcin/ng + - - + agcpn/ng.
i=1

The number n; divides n/ns, ..., n/ng, hence a — ajcin/ny is divisible by ny. Since ¢yn/ny =
1 — binq, we deduce that

a+n7Z=aicin/ny +mZ =a1(1—bini) + mZ = a1 + nZ.

Similarly a + n;Z = a; + n;Z, so we conclude that f(a) = (a1 + n1Z,...,ax + nxZ), so f is
surjective. It remains to apply the theorem of the previous section to complete the proof.

So now we can characterize the finite quotient ring Z /p7** ... p}"* Z as being isomorphic to the
product of rings Z/p}'Z,i=1,...,k.

3. The Euler function and group of units of Z/nZ.

Definition. The Euler function ¢:{0,1,2,...} — {1,2,...} is defined as ¢(0) = ¢(1) = 1,
and

p(n) = #U(Z/nZ)
for n > 1.

EXAMPLE. p(p%) = p% — p*~ ! = p*~(p—1) for a > 1.
Note that @ € U(Z/p°Z) iff n is relatively prime to p. Indeed, if n is relatively prime to p, then
n is relatively prime to p?, so there are integers m, [ such that nm + p®l = 1. Then »m = 1 and
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n € U(Z/p*Z). Conversely, if m € U(Z/p°Z), then there is m € Z such that mm =1, so nm — 1
is divisible by p®. If p divided n, then p would divide nm — (nm — 1) = 1, a contradiction.
So
U(Z/p*Z)={n:0< n<p*—1, n relatively prime to p}

and hence ¢(p?) = p® — p®~L.

THEOREM.

(1) p(ning) = @(n1)p(ng) for two relatively prime numbers ny and ns;
(2) ¢(n) =n]](1 — 1/p;) where p; are all distinct prime divisors of n.

(3) Tocan ¢(d) = n.
Proof. (1) From the Chinese remainder theorem we deduce that U(Z/ninsZ) is isomorphic
to U(Z/mZ x Z]/noZ). The latter is the group of all pairs (z,y) such that there is a pair
(«',y") with (z,y)(«',y") = (zz,yy") = (1,1), i.e. © € U(Z/nZ) and y € U(Z/n2Z). So
U(Z|nZ x Z|noZh) = U(Z)n1Z) X U(Z]/noZ). Thus, p(ning) = ¢(n1)e(ns).
(2) Now if n = pi™ ...ny"*, then

o(n) = o) ... o) =P (1= 1/p1) ..oy (1= 1/pe) = n [ (1 = 1/ps).

(3) First, for n = p® and prime p we get

Yopd= ) o) =1+ Y @ -p"=p"

0<dln 0<i<a 1<i<a

Now prove the equality by induction on n. We need to consider only non-powers of primes. If
n = ning with relatively prime ny < n and ny < n, then d|n = d = dids with di|n1,ds|n2 and

Z (,O(d) = Z So(dl) Z SO(d2) = NiNo = N.

0<d|n 0<d1|n1 0<dz|n2

THREE THEOREMS.
(Euler’s theorem) for every unit @ of Z/nZ

avm =1

(Fermat’s small theorem) for every @ # 0 of Z /pZ

ab 1 =T1.

(Wilson’s theorem) for every prime p

(p—D!'=-1 inZ/pZ

Proof. (1) Since the group U(Z/nZ) has order ¢(n) we deduce that @™ = T for every
a € U(Z/nZ).
(2) follows from (1), since p(p) =p — 1.
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(3) By (2) the polynomial X? — X has exactly p roots in the field Z/pZ, so it can be factorized
over Z/pZ into the product

XP-X=X(X-1)...(X - (p—1)).

The coefficient of X at the LHS is -1 and the coefficient of X at the RHS is (—1)(—2)...(—p+1) =
(=1)P"p -1 = (p—-1), since (-1)»"1 =1ifp=2and (-1)»"! =1if p > 2. Thus,
(p—1!'=-1inZ/pZ.

THEOREM. For a prime p the group U(Z/pZ) is cyclic .

Proof. If n divides p — 1, say p — 1 = nm, then

Xp—l 1= (Xn o 1)(Xn(m—1) + Xn(m—2) 4ot 1)'

The polynomials of the RHS has no more than n and n(m —1) = p—1—n roots in the field Z/pZ.
However, the polynomial X?~1 — 1 has exactly p — 1 distinct roots in Z/pZ, so the polynomial
X™ — 1 has exactly n distinct root in the field Z/pZ.
For d > 0 let
P(d) = #{a € Z/pZ of order d}.

Then for n|(p — 1) we get 34, ¥(d) = n. Clearly 9(1) = p(1) = 1. Assume that 4(d) = ¢(d)
for d|n,d < n. Then

P(n) =n — >, vd)]=n- Y. ed) | =)

0<d|n,d<n 0<d|n,d<n

Thus, ¥(p — 1) = ¢(p — 1) > 0 and there is an element of order p — 1 in the group U(Z/pZ).
It generates it.

4. Linear congruences.

Traditionally the equality of two cosets a +nZ = b+ nZ is written down as a congruence a = b
mod 7. In other words, a = b mod n iff n divides a — b.

We easily deduce the following properties of congruences:

e =a modn; a =b modn = b=a modn; a =b modn,b =c modn = a = c
modn;a=b modn = ad =bd modnford € Z;a=b mod n,c=d modn = a+c = b+d
mod n,ac = bd mod n.

Our nearest aim is to discuss linear congruences.
A linear congruence is az = b mod n. Using Corollary 2 in the last section of Part 1, we can
solve it.

THEOREM. Let d = GCD(a,n). If d /b, then the linear congruence axz = b mod n has no
solutions. If d|b, then the linear congruence ax = b mod n has d distinct solutions xy,zo +
n/d,...,xo+n(d—1)/d mod n where (z¢,yo) is a solution if the linear equation ax —ny = b.

Proof.

First rewrite the congruence as n|(az — b), or az — b = ny with some y € Z, or as a linear
equation ax — ny = b.

Now from Part 1 we know that to solve the linear equation we should first find

d =GCD(a, —n)=GCD(a,n).



12

If d doesn't divide b, then the equation doesn’t have solutions and so the congruence doesn’t have
solutions. If d divides b, then there is a solution (zg, yo) of the equation and all solutions are given
by z = o —tn/d,y = yo — ta/d where t runs over Z. So solutions of the congruence are given by
z =z —tn/d modn, ie. z=mxzo,z0+n/d,...,z0+n(d—1)/d modn.

The Chinese Remainder Theorem can be read off as the statement on solutions of a system

of linear congruences: Let ny,...,n; be integers > 1 such that every two n;,n; are relatively
prime for i # j. Denote n = nj...ng. Then for every integers ai,-..,ar the system of linear
congruences

r=a; modn;, ..., z=a; modng

has a solution a which is uniquely determined modulo n.

We can provide an interpretation of other results of section 2 in terms of congruences. Note
that @ € Z/nZ is a unit iff a is relatively prime to n. Indeed, if @b = 1, then ab =1 mod n, so
n divides ab — 1 and hence a is relatively prime to n. If a is relatively prime to n, then by the
preceding theorem the linear equation az = 1 mod n has a solution, say b mod n. Then @b =1
and @ is a unit of Z/nZ.

Thus, the Euler function can be defined as

o(n) =#{1<a < n:GCD(a,n) =1}.
This function is a so called multiplicative function:
e(nm) = o(n)p(m) if GCD(n,m) = 1.
Euler’'s theorem can be stated in its classical form as
a?™ =1 modn for a relatively prime to n.

Wilson’s theorem says that
(p—1D!'=-1 modp.

The theorem on the cyclicity of U(Z/pZ) means that there is an integer a such that its pow-

2

ers 1 = a% a,a?,...,aP~2 have distinct non-zero remainders modulo p. Such an a is called a

primitive root modulo p.

5. Quadratic congruences.

Definition. Let p > 2 be a prime. An integer a not divisible by p is called a quadratic residue

modulo p (q.r.) if the congruence X? = a mod p is soluble, or equivalently, @ is a square in
Z./pZ. An integer a not divisible by p is called a quadratic non-residue modulo p (q.nr.) if the

conguence X? = a mod p isn’t soluble. For an odd prime p the Legendre symbol %) is defined
p
as 0 if pla, 1 if a is a gq.r. modulo p and -1 if a is a g.nr. modulo p.
LEMMA. Leti,j be in {—1,0,1}. Let p be an odd prime. Then i = j mod p impliesi = j.
Proof. Since p divides i — j and |i — j| < 2 we deduce that i — j = 0.

PROPOSITION. Let p > 2 be a prime. Then
(1) The number of q.r. modulo p is equal to the number of q.nr. modulo p and is equal to

(p—1)/2;
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o (5)-6)G)
@ (5) = oo

Proof. (1) Let g be a primitive root modulo p. Every even power of g is a g.r. modulo p and
every q.r. is a root of the polynomial X®=1/2 — 1, since

(R ®-D/2 Z 7P =1

Therefore they are all roots of the polynomial X(~=1)/2 _ 1 (which has no more than (p — 1)/2
roots). Every non-zero element of Z/pZ is root of X?~1 — 1 = (X®=1/2 _ 1)(x®-1/2 1 1),
so odd powers of g are roots of X(»=1)/2 4+ 1. Hence the polynomial X(=1)/2 4 1 has exactly
(p — 1)/2 roots which are odd powers of g. None of them is a quadratic residue, since those are
roots of the polynomial X(»—1)/2 _ 1. Thus, the set of quadratic residues modulo p coincides with
the set of even powers of § and coincides with the set of roots of the polynomial X®-1)/2 _1;
the set of quadratic non-residues modulo p coincides with the set of odd powers of g and coincides
with the set of roots of the polynomial X (®=1)/2 4 1, Therefore we get (1). Since, in addition,

a?=1/2 = 0 mod p iff p divides a iff <E> = 0, we deduce (2).
p

(3) Both (E) (9> and (a—b) are congruent modulo p to (ab)®=1/2, so by Lemma
p p

DO-)

(4) Follows from (3) and the lemma.

COROLLARY. -1 isa q.r. modulop iff p=1 mod 4.

EXAMPLE 1. There are infinitely many primes congruent to 1 modulo 4.

Indeed, if py, . .., pm are such primes, then there is a prime number p which divides 4(p; . .. py) %+
1. Then —1 = (2p1...pm)? mod p, so -1 is a q.r. modulo p, hence p = 1 mod 4 and distinct
from p1,...,Pm-

EXAMPLE 2. If a prime odd number divides a® + b2, then
either p divides both a and b and then p? divides a2 + b?
of p=1 mod 4.

Indeed, if pla, then p|b, so p?|(a® + b%). If a,b are not divisible by p, then find ¢ such that
ac=1 mod p. Then (bc)?> = —(ac)?=—1 mod p, so p =1 mod 4.

LEMMA. Let p be an odd positive prime and let ¢ > 2 be a prime different from p. Let
S={2,4,...,p—1}. D efine

Tq = qa — plqa/p).

Then

(g> — (_1)Zaesra — (_1)Ea€s[qa/p].
p

Proof. First, r, # 0, since ¢ and a is relatively prime to p and so is qa.
Now, (—1)"er, =7, mod p if 7, is even between 1 and p and (—1)"er, =p—7, mod p is
even between 1 and p if r, is odd. On the other hand, if (—1)"er, = (—1)"r, mod p for a,b € S,



14

then ga = £¢b mod p, so g(a £ b) is divisible by p and hence a = +b mod p; for elements in S
that implies a = b.
Thus, in Z/pZ we get
{(-1)rer,:a e S} ={a:aec S}

We deduce that

H(—l)’”“ra = H a mod p.

a€S a€S
Calculate
¢ [[a=[] @) = [ o
a€S a€S a€S
= (—1)Xaesa H a mod p.
a€S

Since [],¢g @ is relatively prime to p, we conclude that
(Z_q)> = q(p_l)/2 = (_1)EQESTG mod p

and from the first lemma of this section that

(5)-cmer

0=> qa=> (plga/pl + 1) =p > lga/pl+ Y re mod 2,

a€S a€S a€S a€S

50 Yaes T = Laesloa/p] mod 2 and (~1)Tees s = (—1)Zeesloa/r]
THEOREM (Gauss quadratic reciprocity law) For p # q odd positive primes

(%’) (%) _ (—1)-Da-D/ (]39) — (<1)0" Vs,

Proof. Let O = (an)aA = (pa Q),B = (pa())aE = (p/ZaO)aF = (p/QaQ/Q)aG = (p/27q)7H =
(0,g/2). Note that there are no integer points inside OA and EF. Then ) _s[qa/p] is the
number n of integer points with even z-coordinate inside the triangle OAB. It is equal to the sum

Finally,

of the number n; of integer points with even z-coordinate inside the triangle OEF and the number
ng of integer points with even z-coordinate inside FBAF'. For every even integer b the number of
integer points {(b,y): 0 <y < ¢} is equal to ¢ — 1, so ny = n3 mod 2 where n3 is the number
of integer points with even z-coordinate inside FAG. The map (z,y) — (p —x,q —y) transforms
integer points with even z-coordinate inside F'AG into integer points with odd z-coordinate inside
OEF. Thus, n =nji+mnqg4 mod 2 where ny is the number of integer points with odd z-coordinate

inside OFEF".

Thus, Py - (—1)™ where m is just the number of integer points inside OEF.

q
Similarly, (2) = (—1)" where [ is the number of integer points inside OHF.
p

So m + [ is the number of integer points inside OEFH which is equal to (p —1)/2 x (¢ — 1)/2.
To prove the second equality consider - . s[2a/p] =37, 11)/2<agp—1 1 Which is easy to show
is even if p=+1 mod 8 and odd is p = £3 mod 8.
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EXAMPLE. Is 37 a q.r. modulo 837

Calculate
2
3TN _ (pyer-nes-nya (83 _ (83 (93 (337
83 37 37 37) \37 ’

so it is. Then the congruence z? = 37 mod 83 has at least one solution, say ¢ mod 83, the
second is —a mod 83 and —a # ¢ mod 83 since @ Z 0 mod 83. Since Z/83Z is a field, the
congruence has exactly two distinct solutions modulo 83.

Definition. Let m > 1 be an odd integer. An integer n relatively prime to m is said to be a q.r.
(g.nr.) modulo m if @ is (is not) a square in Z/mZ. If m = p; ... ps is the factorization of m into
the product of odd primes, define the Jacobi symbol

-()-()

If nis a gq.r. modulo p; for 1 <7 < s, then <£> = 1. However <l> = 1 doesn’t imply that
m m

2 2 2
n is a q.r. modulo m: (B) = (§> <3) = (—1)(—1) = 1, though 2 isn’t a q.r. modulo 15.
If (ﬁ) = —1, then n isn’t a q.r. modulo at least one of p;, hence it is a g.nr. modulo m.
m
From the definition we deduce the following properties of the Jacobi symbol:
(1) . i
ny =ny modm = (—1) = (—2)

m m

(2)

(%) = () () () = () (o)

PROPOSITION. Let m,n > 1 be relatively prime odd integers. Then
-1 2 2 0 m
o) = (m-1)/2 2 (_ym —-1)/8 e TN (n—1)(m-1)/4
(5) = comvr (2) = om-orm, (2) (%) = -1 .

Proof. For odd integers a, b use the congruences
(a—1)/24+(b—1)/2=(ab—1)/2 mod?2, (a®—1)/8+ (b*—1)/8=(a’b®—1)/8 mod 2
and deduce that

> wi—-v2=(]p-1/2 mod2, > (p]-1)/8=(]]ri—-1)/8 mod2.
Then, apply the QRL. For example, if m = [[p;,n =[] g;, then

(%) (%) “11 (%) (%) = T~ 1)@=/ = (—qyn=Dem1/4,

EXAMPLE. Is 161 a g.r. modulo 5777

- (@0
(- ()-(-()- -

so 161 isn’t a q.r. modulo 577.
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Part 3. Gaussian integers and applications
1. Sums of two squares.

PROPOSITION. Let p be a prime number > 2 congruent to 1 modulo 4. Then there are positive
integers a,b such that p = a® + b%.

Proof. Due to the last section of the previous chapter there is an integer ¢ such that ¢ = —
mod p. Let \/p € (k,k +1). The set

S={zx4+yc:0<z<k,0<y<k}

consists of (k+1)2 > p elements, so two of them, say =1 +y;c and zy+yzc with (z1,y1) # (72,92)
have the same remainder modulo p. Let a = |z — x3| and b = |y; — y2|. Then a? = b?c? = —b?
mod p and p|(a® + b?). Note that 0 < a® + b> < p + p = 2p, the latter inequality due to
a,b < k <./p. Thus, a? + b =p.

THEOREM. Let
n = Hpmp

be the factorization of integer n > 1. Then n is a sum of two squares iff m, is even for every
p=3 mod 4.

Proof. Let n = a®+b%. For a prime p = 3 mod 4 which divides n we get p|(a?+ b?) and so by
Example 2 of the last section of the previous chapter p divides a and b. Write a; = a/p,b1 = b/p
and deduce that p™»~2 divides ai +b}. If m, > 2, repeat the previous argument. Thus, we deduce
that m,, is even.

Conversely, for each primep =1 mod 4 and for p = 2 find integers a,, b, such that p = af,+b12,.
Write p™» = (p™»/2)2 402 for p = 3 mod 4. Then

n= [ @+)™ [ (@™")?>+0.

p=2,p=1 mod 4 p=3 mod 4
Note that (a® + b%)(c? + d?) = (ac — bd)* + (ad + bc)?. Thus, n is a sum of two squares.
2. Irreducible elements of Z][i].

LEMMA. Every irreducible element © of Z[i] divides some integer prime p.

Proof. Since Z[i] is a PID, the ideal 7Z[i] is prime. Consider the ideal I = Z N wZ[i] of Z. It
doesn’t contain 1, since otherwise 1 belongs to 7Z, a contradiction. If ab € Z N 7Z[i], then either
a € Z[i] or b € Z]i], therefore either a € I or b € I. Then I = pZ and 7|p.

Thus, I is a non-zero prime ideal of Z. Hence it is equal to pZ for a prime p. We conclude
p € I C wZ][i], so 7 divides p.
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THEOREM. For every prime p =1 mod 4 let a,,b, be integers such that a’ + b2 = p. Then
every irreducible element of 7[i] is associated to exactly one of the following:

1+1,
ap + byi,ap — byt, for every positive primep =1 mod 4,

positive primes ¢ = 3 mod 4.

Proof.

First, let’s check that each of the listed Gaussian integers is irreducible. If 7 is one of them and
7 = mma, then |7|2 = |71|?||72]|?.

In the first and second case we deduce that | |?|m2|? is a prime, and then one of m; is a unit
and so 7 is irreducible.

In the third case |m|?|m2|> = ¢* for a prime ¢ = 3 mod 4. Note that |m;|? is the sum of two
squares. According to the previous section g isn’t a sum of two squares, so one of |m;|? is equal to
1 and so one of ; is a unit. Thus, 7 is irreducible.

Second, let’s check that the listed Gaussian integers are not associated to each other. Note that
if a ~ (3 in Z[i], then a = Bu for u € Zi] and |a|?> = |B|?. The quotient (1+3)/(1—1) is equal to
i, 50 144 ~ 1—i. The quotient (ay + byi)/(ap — byi) for p > 2 is equal to (a2 +b2) /p+ 2a,byi/p.
Since 2, a,, b, < p, 2a,b, are relatively prime to p, (a2 +b2)/p+2a,byi/p isn't a Gaussian integer.
So ay, + byi % ap — byi for p > 2.

Third, let's check that every irreducible element m of Z[i] is associated to one of the listed
elements. By the preceding lemma there is a prime p such that p = ma with appropriate « € Z[i].
Then p? = |7|?|al?, so |7|? divides p?. Note than |r|? # 1, since only units of Z[i] have module
1. Thus, either (a) |7|? is a prime p or (b) |7|? is the square of a prime gq.

If (a), then p as the sum of two squares is either 2 or =1 mod 4 by the previous section. Put
ay =by =1. So 1T = p = (ap + byi)(a, — byi). Then 7 divides one of the two terms of the RHS,
and since that one is irreducible by the first part of the proof, they are associated to each other.

If (b), then we first check that ¢ =3 mod 4. Clearly q # 2, since 4 isn’t a sum of two squares.
If ¢ were congruent to 1 modulo 4, then by the previous section we would find integers a,, b, such
that ¢ = a2+b2. Then similarly to the previous arguments  divides one of aq+byi, ag —bgi. Hence
|7|? divides |a, + byi|> = g, a contradiction. Thus, ¢ = 3 mod 4 and therefore it is irreducible in
Z[i] by the first part of the proof. From n7 = ggq we conclude that 7 divides ¢, so it is associated
with q.

EXAMPLE. Solve the Diophantine equation Y2 = X3 — 1.

Rewrite it as X3 = (Y +4)(Y —i). Let a be GCD(Y +i,Y —i). Then a divides Y +i— (Y —4) =
2i = (1+1)2. If aisn’t a unit of Z[i], then (1 + )|, 2|2i = (1 +4)?|?|(Y +4)(Y — i) = X3,
so X iseven and Y2 =8 — 1 =7 mod 8. However, 7 isn't a square modulo 8. Thus, « is a unit
and Y +i,Y — i are relatively prime in Z[i].

Factorize X = [Jum;" into a product of a unit u and irreducible elements 7; of Z[i]. Then
(Y +4)(Y — i) = [[un}™. Since Y +4, Y — i are relatively prime, each 7" divides only one
of them. Thus, each of them as a product of some third powers w?”" and a unit. Looking at four
different possibilities for a unit in Z[i] we see that each of them is a third power. Thus, Y + i is
a third power and Y — i is a third power in Z[i], So Y +i = (a + bi)3 for a,b € Z. Comparing
coefficients of i we get a simple equation 1 = b(3a®2 —b?). Thenb=—-1,a=0and X =1,Y =1
is the only solution of the equation Y2 = X3 — 1.
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3. Sums of four squares.

THEOREM. Every positive integer is a some of four squares.
Proof.
We will use the following equality

(@3 +as+a2+ad) PP +b3+b3+b3)=c2+c3+c3+cl

where
c1 = a1b1 + a2b2 + a3b3 + a4b4, Co = a1b2 — a2b1 + a3b4 - a4b3

C3 = a1b3 — a3b1 + a4b2 — a2b4, Cq4 = a1b4 — a4b1 + a2b3 — a3b2

To prove the theorem it suffices to show that every positive prime p is a sum of four squares.
We can assume p > 2.

Consider the set A; C Z/pZ consisting of zero and all quadratic residues modulo p and set
Ay = —1— Ay C Z/pZ. Each consists of (p + 1)/2 elements, so their intersection is not empty.
So there are a,b € Z such that > = —1 — b> mod p. Then p|(1 + a? + b?).

We have shown there are integers a; such that p divides a? + -+ + a3 > 0. By passing
to remainders modulo p we can assume |a;| < p/2 for all i. Then a2 + --- + a2 = pm with
0 < m < p. Assume that m > 1.

Let b; = a; mod m and |b;| < m/2. Then b + --- + b3 = mr with 0 < r < m.

If » = 0, then b; = 0 and m|a; for each i, so mp = a? + --- + a? is divisible by m

2 and p

is divisible by m which is between 1 and p, a contradiction. If = m, then m/2 is an integer,
|b;| = m/2 and m/2 divides a; for each i. Then m?/4 divides a? +---+a3 = pm, so either m = 2
orm=4.Ifm=2,thena; =1 mod 2,s02p=a?+---+a?=4 mod 4 and then p is divisible
by 2, a contradiction. If m = 4, then a; =2 mod 4, so 4p =a? +--- + a3 =16 mod 16 and p
is divisible by 4, a contradiction. Thus, 0 < r < m.

Then

mirp=(ai+---+a)PP+---+b3) =cF+ -+,

where ¢; are given by the first equality of the proof. The formulas for ¢; and the congruences
b; = a; mod m show that ¢; = a?+---+ a2 = pm = 0 mod m, cz,c3,c4 = 0 mod m. Set
d; =ci/m €Z. Thend} +---+d3 = pr.

Thus, we have descented from pm as a sum of four squares to pr with » < m as a sum of four
squares. Therefore we can reach the level p and so p is a sum of four squares.
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Part 4. p-adic numbers
1. Norms on a field.

Definition Let F' be a field. A map | |:F — [0,+00) is called a norm on F if it satisfies the
following three properties:
la| =0 iff a=0

|| = |a||B| for every a, 3 € F
o+ 8| < |a| +|8| for every o, 3 € F.

We can deduce that [I|=1and |- 1|| -1 =1,s0 | —1| =1. Then | —a| = | — 1||e| = ||
EXAMPLES. 1) the trivial norm: |a| =1 for a # 0, |0] = 0.
2) if F = Q,R,C, then the module is a norm on F'. We denote it by | |-

3) let p be a positive prime. Define a new norm on Q which is called the p-adic norm.
First, for a non-zero integer a put

vp(a) =min{m € Z : p™|a} = min{m € Z : a € p"'7Z}.

Then vy (ab) = vp(a) + vp(b) and vp(a + b) > min(vy(a), vp(b)). For a non-zero rational @ = a/b
define

up() = vp(a) — vy (D).
If @ = ¢/d, then ad = bc and v, (a) + vp(d) = vp(b) + vp(c), 50 vp(a) — vp(b) = vp(c) — vp(d).
Thus, v,:Q* — Z is a well defined map. It is called the p-adic valuation.
We get

vp(aB) = vp(a/b- e/ f) = vp(ae) — vp(bf) = vp(a) + vyp(B)
and

vp(a+ fB) = vp(a/b+e/f) = vp((af + be)/(bf)) = vp(af + be) — vp(bf)
> min(vy (af) — vp(bf), vp(be) — vp(bf)) = min(v, (a/b), vp(e/ f)) = min(vp(a), v, (B))-

Put
p~r(@) ifa£0
lafp = o
0, if a =0.

Thus closer ||, to zero, more is the power of p which divides c.
We then have the first and second property of a norm for | |,. f a+8=00ora=0or =0,
then

o + /3|p < max(|a|p, ‘mp) < |O“p + W|p-

Otherwise,
la + B, = P_Up(a+5) < max(p—up(a),p—vp(ﬁ)) = max(|alp, |Blp) < |alp + |Blp-

Thus,

|p is @ norm on Q. It is called the p-adic norm on Q.



Definition. A norm | | on a field F'is called non-Archimedean if it satisfies
la + f| < max(|al,|B]|) forevery o, € F.

It is called Archimedean otherwise.

EXAMPLES: the trivial norm is a non-Archimedean norm, the module is an Archimedean norm,
the p-adic norm on Q is non-Archimedean.

2. All norms on Q.

Let P be the set of all positive primes and infinity.
THEOREM. Let | | be a non-trivial norm on Q. Then there isp € P and a real ¢ > 0 such that

| T=1 15

Proof.

Consider two possible cases.

1) |n| < 1 for every integer n > 1. Let p be the minimal positive integer, such that |p| < 1. If
p = p1p2 With positive integers p1, ps, then |p| = |p1||p2| < 1, so either p; =1 or p; = 1. Hence
pis a prime. If ¢ ¢ pZ, then p®, ¢® are relatively prime for every s > 1. Hence ap® + bg® = 1 with
some integers a, b and hence

1= (1] < |a|lp®| + |bl|¢°| < [p°] + |¢°]-

If |g| < 1, then for sufficiently large s we would get |g|*, |p|* < 1/2 which contradicts the previous

inequality. Thus, |g| = 1 for every positive prime ¢ different from p. Hence |p/| = 1 for every integer
p' relatively prime to p. Let ¢ > 0 be such that |p| = p~—°. Then for in integer n = p¥»("p’ with
p' relatively prime to p we get [p'| = 1, |n|, = [p|*»(™) = p=vrp(n)e = [n|;. Therefore |a| = |aff
for every a € Q.

2) Let |b] > 1 for some integer b > 1. Then for every integer a > 1 one can write b =

bpa® + bg_1a"" 1+ + by with 0 < b; < a, by #0, a* < b. Then

|6 < (1be| + [Br—1| + -+ - + [bo|) max(1,al, ..., |al*).
Note that k < log, b, so if |a|] > 1, then max(1,|al,...,|a|*) = |a|* < |a|'°8®. In addition, |bx|+
b1 |-+ -+]bo| < (k+1)max((0], [1],..., |a—1]) < (log, b+1)d where d = max([0], [1],.. ., Ja—

1|). Therefore
|b] < (log, b+ 1)dmax(1, |a[l8a ).

Substituting 6™ instead of b in the last inequality, we get
bl < (mlog, b+ 1)"/™d"/™ max(1, |a[*6=?)
and

|b| < max(1,]|a|"8=?) ml_i)r_rl_loo(m log, b+ 1)Y/™ mEIEw d*/™ max(1, ]a|'°%« ) = max(1, |a|'°8=®).

Hence |a| > 1 and then || < |a|'8« . Similarly we deduce that |a| < [b|'°82¢. Thus, |a| = |b|'°8s ¢
for every integer a > 1. Let ¢ > 0 be such that |b] = |b|S,. Then |a| = |a|S, for every integer



a > 1. The same equality holds for a = 1,0 and negative integers, since | — a| = |a|. From
multiplicativity of the norm we conclude that |a| = |«$, for every o € Q.

All norm | |,, p € P are linked together by the following remarkable property.

LEMMA.

H la|l, =1 for every a € Q.
pEP

Proof. Each norm is multiplicative, so it is sufficient to check the equality for non-zero integers.

Using factorization, it suffices to check the equality for a positive prime ¢. We get |¢|, = ¢7 %,

|q|00 = ql

qlp = 1 for p # q, and the formula follows.
3. p-adic numbers.

Recall that the field of real numbers R is the completion of Q with respect to the norm | |- In
other words every real number « has a decimal representation and is expressed as o = Z,@i ap107F
where a; € {0,...,9}. If we avoid decimal representations in which a; = 9 for all £ > ', then
every real number has a unique decimal representation. Note that |10_’“\Oo — 0 when k£ — +o00.

We can consider a completion of (Q with respect to the p-adic norm.

Definition. The field of p-adic numbers (), is the completion of Q with respect to the p-adic
norm | |,. In other words, p-adic numbers are convergent (with respect to the p-adic norm) series
Z,'::"j arp®, ap € 7Z; addition and multiplication of power series as elements of the field Qp is
defined by the natural rule:

+o00 +o0 +o0

> bkpt ) bt =D (b + )P,

k=i k=i k=i
+o0 +o00 +o00
O bep®) x O bip*) = bk, where b = it}
k=i k=i k=i !

So we have the field of 2-adic numbers @y, 3-adic numbers Qs, ... .
To justify the definition, consider an infinite series

+o0
. 11
O{:aipl-l-ai_{_lpl-l_ + .= E a,kpk7 ay € 7
k=1

Its partial sums a,, = ZZZZ arp® satisfy the property for every € > 0 there is N such that for all
n>m>=N
|an — amlp < e.

Indeed, just take N such that p~™ < e. Then |a, — amlp < | Y5, axP®lp <P~V < e. So, the
partial sums o, form a Cauchy sequence (wy,) of rational numbers with respect to | |,. Therefore,
by the definition of the completion its limit « exists as an element of Q.

On the other hand, each element of @, is the limit of a Cauchy sequence (f3,) of rational
numbers. It means that |3, — 8,_1|, tends to zero, so for the rational number a,, /b, = B, — Bn_1
with relatively prime a,, and b, we get i, = vp(an/bn) = vp(an) — vp(bn) — +00. Moving all
powers of p to the numerator, we can assume that b, is relatively prime to p and a,, = p‘~d/,
with integer a, relatively prime to p. There are integers e, f such that b,e + pf = 1 and we can
rewrite a, /by, as (ane)/(1 — pf). Note that 1/(1 —pf) =1+ pf +p?f> + ... converges in Q,.



So a, /by, = ane + pfane + p?f2ane + .... Similarly we can produce a power p expression for
@n—1/bn_1,---,a0/bo, Bo- Then By = Bo + a1 /by + -+ an /by = 17 b,(cn)p"’. Since i, tends
to +oo, for a fixed k the coefficients b,(gn) stabilize = by € Z for sufficiently large n. Thus, the
limit of 3, in @, is equal to the convergent series Z;::(’f brp”.

We conclude that every p-adic number is a power series Z;’:oj bip* with integer by,.

Writing by, in powers of p with coefficients in S, = {0,1,...,p—1} we even can assume that the
coefficients by, belong to S,. Forinstance, -1 =p—1+(—-1)p=p—1+(p—)p+(-1)p?>=--- =
Zizo(p—l)p". Note that if 32720 cxp* = 3272 ¢ p* with ¢k, ¢, € S, then 3% (cr—c},)p* =0,
so (c; — ¢)p = Y325, 1 (cx — ¢, )p*. Then (c; — c})p' is divisible by pi*! and hence ¢; — ¢} is
divisible by p. Since ¢;, ¢; € S, we deduce that ¢; = ¢j. Similarly, we show that ¢, = ¢}, for all k.
Thus, for a p-adic number « the expression o = Z;’Z‘X; cep® with ¢, € Sp is unique (without any
restriction on the sequence of ¢ contrary to the case of R!).

So

+00
Q = {Z ckp® e € Sp)

k=i

We can extend the p-adic valuation v, to Q, by the rule

+o0
Up(chpk) =1 if¢#0.
k=i

+0o0 k| — .—4
k=1 Ckp |_p z'

Similarly to the real analysis one can develop a so called p-adic analysis. It is simpler to study

Then we get a non-Archimedean norm | |,: @, — [0, +00),

than the real analysis: for example a series 720 o, o, € Q, converges in Q, iff |ax|, — 0 when
k — +4o0.

4. p-adic integers.

In the field of p-adic numbers Q, we have an analogue of integers, which are called p-adic

integers Z,. Those are
Lp={aeQp:|alp, <1}

1
={a € Q) :vp(a) >0} U {0}

+oo
= {Z cxp® e € Sp)
k=0

+o0
= {Z arp® : ay € Z}.
k=0
p-adic integers form a ring. Its group of units is

U(Zp) ={a€Qy:|al, =1}
= {aEQ; tvp(a) = 0}

400
= {Z cup® e € Sp,co # 0}.

k=0

Every element « of Zj, is a product of a non-negative power of p: p?»(®) and a unit €. Every prime
in Z which is relatively prime to p is a unit to Z,. Every irreducible element of Z, is associated to
p. So up to associativity there is exactly one irreducible element of Z,,: p.



The ring Z, is an ED with respect to the map A(a) = vp(a) + 1 for non-zero a and A(0) = 0.
Indeed, for non-zero b € Zj, define ¢, € Zj, such that a = bg + r by the rule: if v,(a) < vp(b),
then ¢ = 0,7 = a; if vy(a) > vy(b), then r = 0 and ¢ = ab™!; note that ¢ € Z,, since
vp(ab™1) = vy(a) — v, (b) > 0.

Thus, Zy is an ED, a PID and a UFD. Factorization is Zj, is simple:

a=p"*@e e cU(Z,) for non-zero a € Z,.



Part 5. Distribution of primes
1. Zeta-function.

Recall that the harmonic series

o)

(UL S
2 3 N n

n=1

diverges.
Euler introduced the zeta-function in 1737 as

<1
C(S):ZE, seR
n=1

Riemann considered this function for complex values of s.

LEMMA 1. For every € > 0 zeta-function absolutely and uniformly converges in the half-plane
Re(s) > 1+¢€. ForRe(s) > 1
[T -9t =)
p
where the product is taken over all positive primes.
Proof. Put s = o + it for o,7 € R. Then |n~%| = |n"%||n"*"| = |n~?| and

o &) [e.e]
1S < Y g / 57ds = (m— 17 (o — 1) < 1/((m — 1)%) — 0
n=m n=m m—1
when m — +o00. This proves the first statement.
Now

[Ta-p) ' =[+p " +p > +...) =Y n™" + A(m,5)

psm psm nsm

where A(m,s) as a sum of some n=* with n > m is < ), n=° < 1/(mfe) — 0 when

n>m
m — +0Q.

Corollary. Zeta-function is analytic for Re(s) > 1.

Remark. Zeta-function can be analytically extended to the whole plane. It has a simple pole at
s = 1. It is analytic at all other complex points. It has zeros at —2, —4, —6,... and there are no
more zeros outside the critical strip 0 < Re(s) < 1.

Riemann conjecture. All zeros of ((s) in the critical strip lie on the vertical line Re(s) = 1/2.

With the help of computers this is checked for 3 000 000 zeros of ((s).

In 1837 Dirichlet defined a modified zeta-function for real values of s. His definition involves
characters modulo a prime m. Let x be a homomorphism from the group of units of Z/mZ to
the multiplicative group of non-zero elements of C, x:U(Z/mZ) — C*. Since the order of the
first group is m — 1, x(@) is an (m — 1)st complex root of 1. Both the group U(Z/mZ) and the
group of (m — 1)st roots of unity are cyclic. Let g be a generator of the first and h be a generator
of the second. Then every character is uniquely determined by the image of g, i.e. by number 1,
0 < i< m—1, such that x(g) = h®. So there are exactly m — 1 distinct characters modulo m.

The product of two characters is a character and from the previous description it follows that
the characters modulo m form a cyclic group X,,, of order m — 1. The identity element of this
group is the character x; for which x1(g) = 1. One easy property of characters is given by



LEMMA 2.

1 @) { 1, ifg=1
— X\9) = .
-1 iex 0, otherwise.
Proof.
Zx(T): lem—l.
X€X X€EX

If g # 1, then there is X’ such that x'(g) # 1. Note that X = Xx' = {xx’ : x € X}. Hence

D x(n) =Y x(m)x'(n) =x'(n) Y x(n),
xX€X XE€X XE€EX
S0 erx x(n) = 0.
For a character x: U(Z/mZ) — C* denote by the same notation x the map Z — C:
o) { x@), ifm
n)=
X 0, if m|n.
The map y is also called a character modulo m.
THEOREM. Let a and m > 2 be relatively prime integers. Then there are infinitely many primes
p=a modm.
Some ideas of the proof. We can assume m > 2. Consider the case m is prime.
For a character y modulo m Dirichlet defined a so called L-function by
o
_ Z x(n)
= et

n=1

In particular,

Lex)= Y =3 -3
n>1 n>1

n>21,nZ0 mod m

(1= 1/m*)((s).
Similar to Lemma 1 we get
= H(1 -
p

for Re(s) > 1
Let an integer b satisfy ab =1 mod m. Note that —log(1 —=z) =37+, z¥/k. Then

ﬁ e e PILCID DT X)),
XEX xeX p
ZZ > x(b)x(p")/kp™ = ZZ > x(bp®)) k"
P k=1lxeX p k=1 xeX

Note that bp* =1 mod m iff p* = @ mod m. Then Lemma 2 implies that

ﬁ x(b)log L(s,x) = Z — + Z Z k;ks'

XEX P=a modm k=2 pk=a mod m

One can show that (this isn’t easy)
(1) the second term of the RHS remains bounded when s — 1.
(2) if x # x1 then L(s, x) remains bounded when s — 1.
Since limg_,14 L(s, x1) = +00 we conclude that
1
+oo= lim —— x(b)log L(s,x) = lim Z

s—=1+m —1 s—14

1
e
XEX p= amodmp

Thus, there are infinitely many primes congruent a modulo m.



