
Algebraic Number Theory 2007/2008

1. Algebraic prerequisites

1.1. General

1.1.1.

Definition. For a field F define the ring homomorphism Z→ F by n 7→ n · 1F . Its
kernel I is an ideal of Z such that Z/I is isomorphic to the image of Z in F . The
latter is an integral domain, so I is a prime ideal of Z, i.e. I = 0 or I = pZ for a
prime number p. In the first case F is said to have characteristic 0, in the second –
characteristic p .

Definition–Lemma. Let F be a subfield of a field L. An element a ∈ L is called
algebraic over F if one of the following equivalent conditions is satisfied:

(i) f (a) = 0 for a non-zero polynomial f (X) ∈ F [X];
(ii) elements 1, a, a2, . . . are linearly dependent over F ;
(iii) F -vector space F [a] = {

∑
aia

i : ai ∈ F} is of finite dimension over F ;
(iv) F [a] = F (a).

Proof. (i) implies (ii): if f (X) =
∑n

i=0 ciX
i , c0, cn 6= 0, then

∑
cia

i = 0.
(ii) implies (iii): if

∑n
i=0 cia

i = 0, cn 6= 0, then an = −∑n−1
i=0 c−1

n cia
i , an+1 =

a · an = −∑n−1
i=0 c−1

n cia
i+1 = −∑n−2

i=0 c−1
n cia

i+1 + c−1
n cn−1

∑n−1
i=0 c−1

n cia
i , etc.

(iii) implies (iv): for every b ∈ F [a] we have F [b] ⊂ F [a], hence F [b] is of finite
dimension over F . So if b 6∈ F , there are di such that

∑
dib

i = 0, and d0 6= 0. Then
1/b = −d−1

0
∑n

i=1 dib
i−1 and hence 1/b ∈ F [b] ⊂ F [a].

(iv) implies (i): if 1/a is equal to
∑

eia
i , then a is a root of

∑
eiX

i+1 − 1.

For an element a algebraic over F denote by

fa(X) ∈ F [X]

the monic polynomial of minimal degree such that fa(a) = 0.
This polynomial is irreducible: if fa = gh, then g(a)h(a) = 0, so g(a) = 0 or

h(a) = 0, contradiction. It is called the monic irreducible polynomial of a over F .
For example, fa(X) is a linear polynomial iff a ∈ F .
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Lemma. Define a ring homomorphism F [X] → L, g(X) 7→ g(a). Its kernel is the
principal ideal generated by fa(X) and its image is F (a), so

F [X]/(fa(X)) ' F (a).

Proof. The kernel consists of those polynomials g over F which vanish at a. Using
the division algorithm write g = fah + k where k = 0 or the degree of k is smaller
than that of fa. Now k(a) = g(a) − fa(a)h(a) = 0, so the definition of fa implies
k = 0 which means that fa divides g.

Definition. A field L is called algebraic over its subfield F if every element of L is
algebraic over F . The extension L/F is called algebraic.

Definition. Let F be a subfield of a field L. The dimension of L as a vector space
over F is called the degree |L : F | of the extension L/F .

If a is algebraic over F then |F (a) : F | is finite and it equals the degree of the
monic irreducible polynomial fa of a over F .

Transitivity of the degree |L : F | = |L : M ||M : F | follows from the observation:
if αi form a basis of M over F and βj form a basis of L over M then αiβj form a
basis of L over F .

Every extension L/F of finite degree is algebraic: if β ∈ L, then |F (β) : F | 6
|L : F | is finite, so by (iii) above β is algebraic over F . In particular, if α is algebraic
over F then F (α) is algebraic over F . If α, β are algebraic over F then the degree of
F (α, β) over F does not exceed the product of finite degrees of F (α)/F and F (β)/F
and hence is finite. Thus all elements of F (α, β) are algebraic over F .

An algebraic extension F ({ai}) of F is is the composite of extensions F (ai),
and since ai is algebraic |F (ai) : F | is finite, thus every algebraic extension is the
composite of finite extensions.

1.1.2. Definition. An extension F of Q of finite degree is called an algebraic number
field, the degree |F : Q| is called the degree of F .

Examples. 1. Every quadratic extension L of Q can be written as Q(
√

e) for a
square-free integer e. Indeed, if 1, α is a basis of L over Q, then α2 = a1 + a2α with
rational ai , so α is a root of the polynomial X2 − a2X − a1 whose roots are of the
form a2/2±

√
d/2 where d ∈ Q is the discriminant. Write d = f/g with integer f, g

and notice that Q(
√

d) = Q(
√

dg2) = Q(
√

fg). Obviously we can get rid of all square
divisors of fg without changing the extension Q(

√
fg).

2. Cyclotomic extensions Qm = Q(ζm) of Q where ζm is a primitive m th
root of unity. If p is prime then the monic irreducible polynomial of ζp over Q is
Xp−1 + · · · + 1 = (Xp − 1)/(X − 1) of degree p− 1.
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1.1.3. Definition. Let two fields L,L′ contain a field F . A homo(iso)morphism
σ: L → L′ such that σ|F is the identity map is called a F -homo(iso)morphism of L
into L′ .

The set of all F -homomorphisms from L to L′ is denoted by HomF (L,L′). Notice
that every F -homomorphism is injective: its kernel is an ideal of F and 1F does not
belong to it, so the ideal is the zero ideal. In particular, σ(L) is isomorphic to L.

The set of all F -isomorphisms from L to L′ is denoted by IsoF (L,L′).
Two elements a ∈ L, a′ ∈ L′ are called conjugate over F if there is a F -homomorphism

σ such that σ(a) = a′ . If L,L′ are algebraic over F and isomorphic over F , they are
called conjugate over F .

Lemma. (i) Any two roots of an irreducible polynomial over F are conjugate over F .
(ii) An element a′ is conjugate to a over F iff fa′ = fa.
(iii) The polynomial fa(X) is divisible by

∏
(X − ai) in L[X], where ai are all

distinct conjugate to a elements over F , L is the field F ({ai}) generated by ai over
F .

Proof. (i) Let f (X) be an irreducible polynomial over F and a, b be its roots in a
field extension of F . Then fa = fb = f and we have an F -isomorphism

F (a) ' F [X]/(fa(X)) = F [X]/(fb(X)) ' F (b), a 7→ b

and therefore a is conjugate to b over F .
(ii) 0 = σfa(a) = fa(σa) = fa(a′), hence fa = fa′ . If fa = fa′ , use (i).
(iii) If ai is a root of fa then by the division algorithm fa(X) is divisible by X−ai

in L[X].

1.1.4. Definition. A field is called algebraically closed if it does not have algebraic
extensions.

Theorem (without proof). Every field F has an algebraic extension C which is
algebraically closed. The field C is called an algebraic closure of F . Every two
algebraic closures of F are isomorphic over F .

Example. The field of rational numbers Q is contained in algebraically closed field
C. The maximal algebraic extension Qa of Q is obtained as the subfield of complex
numbers which contains all algebraic elements over Q. The field Qa is algebraically
closed: if α ∈ C is algebraic over Qa then it is a root of a non-zero polynomial with
finitely many coefficients, each of which is algebraic over Q. Therefore α is algebraic
over the field M generated by the coefficients. Then M (α)/M and M/Q are of finite
degree, and hence α is algebraic over Q, i.e. belongs to Qa . The degree |Qa : Q| is
infinite, since |Qa : Q| > |Q(ζp) : Q| = p− 1 for every prime p.

The field Qa is is much smaller than C, since its cardinality is countable whereas
the cardinality of complex numbers is uncountable).
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Everywhere below we denote by C an algebraically closed field containing F .
Elements of HomF (F (a), C) are in one-to-one correspondence with distinct roots

of fa(X) ∈ F [X]: for each such root ai , as in the proof of (i) above we have
σ: F (a)→ C , a 7→ ai ; and conversely each such σ ∈ HomF (F (a), C) maps a to one
of the roots ai .

1.2. Galois extensions

1.2.1. Definition. A polynomial f (X) ∈ F [X] is called separable if all its roots in C
are distinct.

Recall that if a is a multiple root of f (X), then f ′(a) = 0. So a polynomial f is
separable iff the polynomials f and f ′ don’t have common roots.

Examples of separable polynomials. Irreducible polynomials over fields of charac-
teristic zero, irreducible polynomials over finite fields.

Proof: if f is an irreducible polynomial over a field of characteristic zero, then
its derivative f ′ is non-zero and has degree strictly smaller than f ; and so if f has a
multiple root, than a g.c.d. of f and f ′ would be of positive degree strictly smaller than
f which contradicts the irreducibility of f . For the case of irreducible polynomials
over finite fields see section 1.3.

Definition. Let L be a field extension of F . An element a ∈ L is called separable
over F if fa(X) is separable. The extension L/F is called separable if every element
of L is separable over F .

Example. Every algebraic extension of a field of characteristic zero or a finite field is
separable.

1.2.2. Lemma. Let M be a field extension of F and L be a finite extension of M .
Then every F -homomorphism σ: M → C can be extended to an F -homomorphism
σ′: L→ C .

Proof. Let a ∈ L \M and fa(X) =
∑

ciX
i be the minimal polynomial of a over

M . Then (σfa)(X) =
∑

σ(ci)Xi is irreducible over σM . Let b be its root. Then
σfa = fb . Consider an F -homomorphism φ: M [X] → C , φ(

∑
aiX

i) =
∑

σ(ai)bi .
Its image is (σM )(b) and its kernel is generated by fa . Since M [X]/(fa(X)) 'M (a),
φ determines an extension σ′′: M (a) → C of σ. Since |L : M (a)| < |L : M |, by
induction σ′′ can be extended to an F -homomorphism σ′: L→ C such that σ′|M = σ.

1.2.3. Theorem. Let L be a finite separable extension of F of degree n. Then there
exist exactly n distinct F -homomorphisms of L into C , i.e. |HomF (L,C)| = |L : F |.
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Proof. The number of distinct F -homomorphisms of L into C is 6 n is valid for
any extension of degree n. To prove this, argue by induction on |L : F | and use the
fact that every F -homomorphism σ: F (a)→ C sends a to one of roots of fa(X) and
that root determines σ completely.

To show that there are n distinct F -homomorphisms for separable L/F consider
first the case of L = F (a). From separability we deduce that the polynomial fa(X) has
n distinct roots ai which give n distinct F -homomorphisms of L into C : a 7→ ai .

Now argue by induction on degree. For a ∈ L \ F consider M = F (a). There
are m = |M : F | distinct F -homomorphisms σi of M into C . Let σ′

i: L → C
be an extension of σi which exists according to 1.2.2. By induction there are n/m
distinct F (σi(a))-homomorphisms τij of σ′

i(L) into C . Now τij ◦ σ′
i are distinct

F -homomorphisms of L into C .

1.2.4. Proposition. Every finite subgroup of the multiplicative group F × of a field F
is cyclic.

Proof. Denote this subgroup by G, it is an abelian group of finite order. From the
standard theorem on the stucture of finitely generated abelian groups we deduce that

G ' Z/m1Z⊕ · · · ⊕ Z/mrZ

where m1 divides m2 , etc. We need to show that r = 1 (then G is cyclic). If r > 1,
then let a prime p be a divisor of m1 . The cyclic group Z/m1Z has p elements
of order p and similarly, Z/m2Z has p elements of order p, so G has at least p2

elements of order p. However, all elements of order p in G are roots of the polynomial
Xp − 1 which over the field F cannot have more than p roots, a contradiction. Thus,
r = 1.

1.2.5. Theorem. Let F be a field of characteristic zero or a finite field. Let L be a finite
field extension of F . Then there exists an element a ∈ L such that L = F (a) = F [a].

Proof. If F is of characteristic 0, then F is infinite. By 1.2.3 there are n = |L : F |
distinct F -homomorphisms σi: L → C . Put Vij = {a ∈ L : σi(a) = σj (a)}. Then
Vij are proper F -vector subspaces of L for i 6= j of dimension < n, and since F is
infinite, there union ∪i6=jVij is different from L. Then there is a ∈ L \ (∪Vij ). Since
the set {σi(a)} is of cardinality n, the minimal polynomial of a over F has at least
n distinct roots. Then |F (a) : F | > n = |L : F | and hence L = F (a).

If L is finite, then L× is cyclic by 1.2.4. Let a be any of its generators. Then
L = F (a).

1.2.6. Definition. An algebraic extension L of F (inside C ) is called the splitting
field of polynomials fi if L = F ({aij}) where aij are all the roots of fi .

An algebraic extension L of F is called a Galois extension if L is the splitting
field of some separable polynomials fi over F .
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Example. Let L be a finite extension of F such that L = F (a). Then L/F is a
Galois extension if the polynomial fa(X) of a over F has deg fa distinct roots in L.

So quadratic extensions of Q and cyclotomic extensions of Q are Galois extensions.

1.2.7. Lemma. Let L be the splitting field of an irreducible polynomial f (X) ∈ F [X].
Then σ(L) = L for every σ ∈ HomF (L,C).

Proof. σ permutes the roots of f (X). Thus, σ(L) = F (σ(a1), . . . , σ(an)) = L.

1.2.8. Theorem. A finite extension L of F is a Galois extension iff
σ(L) = L for every σ ∈ HomF (L,C) and |HomF (L,L)| = |L : F |.
The set HomF (L,L) equals to the set IsoF (L,L) which is a finite group with

respect to the composite of field isomorphisms. This group is called the Galois group
Gal(L/F ) of the extension L/F .

Sketch of the proof. Let L be a Galois extension of F . The right arrow follows from
the previous proposition and properties of separable extensions. On the other hand, if
L = F ({bi}) and σ(L) = L for every σ ∈ HomF (L,C) then σ(bi) belong to L and
L is the splitting field of polynomials fbi

(X). If |HomF (L,L)| = |L : F | then one
can show by induction that each of fbi

(X) is separable.
Now suppose we are in the situation of 1.2.5. Then L = F (a) for some a ∈ L.

L is the splitting field of some polynomials fi over F , and hence L is the splitting
field of their product. By 1.2.7 and induction we have σL = L. Then L = F (ai) for
any root ai of fa, and elements of HomF (L,L) correspond to a 7→ ai . Therefore
HomF (L,L) = IsoF (L,L). Its elements correspond to some permutations of the set
{ai} of all roots of fa(X).

1.2.9. Theorem (without proof). Let L/F be a finite Galois extension and M be an
intermediate field between F and L.

Then L/M is a Galois extension with the Galois group

Gal(L/M ) = {σ ∈ Gal(L/F ) : σ|M = idM}.

For a subgroup H of Gal(L/F ) denote

LH = {x ∈ L : σ(x) = x for all σ ∈ H }.
This set is an intermediate field between L and F .

1.2.10. Main theorem of Galois theory (without proof). Let L/F be a finite Galois
extension with Galois group G = Gal(L/F ).

Then H → LH is a one-to-one correspondence between subgroups H of G and
subfields of L which contain F ; the inverse map is given by M → Gal(L/M ). We
have Gal(L/M ) = H .
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Normal subgroups H of G correspond to Galois extensions M/F and

Gal(M/F ) ' G/H.

1.3. Finite fields

Every finite field F has positive characteristic, since the homomorphism Z → F is
not injective. Let F be of prime characteristic p. Then the image of Z in F can
be identified with the finite field Fp consisting of p elements. If the degree of F/Fp

is n, then the number of elements in F is pn . By 1.2.4 the group F× is cyclic of
order pn − 1, so every non-zero element of F is a root of the polynomial Xpn−1 − 1.
Therefore, all pn elements of F are all pn roots of the polynomial fn(X) = Xpn−X .
The polynomial fn is separable, since its derivative in characteristic p is equal to
pnXpn−1 − 1 = −1. Thus, F is the splitting field of fn over Fp . We conclude that
F/Fp is a Galois extension of degree n = |F : Fp|.

Lemma. The Galois group of F/Fp is cyclic of order n: it is generated by an auto-
morphism φ of F called the Frobenius automorphism:

φ(x) = xp for all x ∈ F .

Proof. φm(x) = xpm = x for all x ∈ F iff n|m.

On the other hand, for every n > 1 the splitting field of fn over Fp is a finite field
consisiting of pn elements.

Thus,

Theorem. For every n there is a unique (up to isomorphism) finite field Fpn consisting
of pn elements; it is the splitting field of the polynomial fn(X) = Xpn −X . The finite
extension Fpnm/Fpn is a Galois extension with cyclic group of degree m generated
by the Frobenius automorphism φn: x 7→ xpn

.

Lemma. Let g(X) be an irreducible polynomial of degree m over a finite field Fpn .
Then g(X) divides fnm(X) and therefore is a separable polynomial.

Proof. Let a be a root of g(X). Then Fpn (a)/Fpn is of degree m, so Fpn (a) = Fpnm .
Since a is a root of fnm(X), g divides fnm . The latter is separable and so is g.
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2. Integrality

2.1. Integrality over rings

2.1.1. Proposition – Definition. Let B be an integral domain and A be its subring.
An element b ∈ B is called integral over A if it satisfies one of the following

equivalent conditions:
(i) there exist ai ∈ A such that f (b) = 0 where f (X) = Xn +an−1X

n−1 + · · ·+a0;
(ii) the subring of B generated by A and b is an A-module of finite type;
(iii) there exists a subring C of B which contains A and b and which is an

A-module of finite type.

Proof. (i)⇒ (ii): note that the subring A[b] of B generated by A and b coincides
with the A-module M generated by 1, . . . , bn−1 . Indeed,

bn+j = −a0b
j − · · · − bn+j−1

and by induction bj ∈M .
(ii)⇒ (iii): obvious.
(iii)⇒ (i): let C = c1A+ · · ·+cmA. Then bci =

∑
j aijcj , so

∑
j(δijb−aij)cj = 0.

Denote by d the determinant of M = (δijb − aij ). Note that d = f (b) where
f (X) ∈ A[X] is a monic polynomial. From linear algebra we know that dE = M ∗M
where M∗ is the adjugate matrix to M and E is the identity matrix of the same order
of that of M . Denote by C the column consisting of cj . Now we get MC = 0 implies
M∗MC = 0 implies dEC = 0 implies dC = 0. Thus dcj = 0 for all 1 6 j 6 m.
Every c ∈ C is a linear combination of cj . Hence dc = 0 for all c ∈ C . In particular,
d1 = 0, so f (b) = d = 0.

Examples. 1. Every element of A is integral over A.
2. If A,B are fields, then an element b ∈ B is integral over A iff b is algebraic

over A.
3. Let A = Z, B = Q. A rational number r/s with relatively prime r and

s is integral over Z iff (r/s)n + an−1(r/s)n−1 + · · · + a0 = 0 for some integer ai .
Multiplying by sn we deduce that s divides rn , hence s = ±1 and r/s ∈ Z. Hence
integral in Q elements over Z are just all integers.

4. If B is a field, then it contains the field of fractions F of A. Let σ ∈
HomF (B,C) where C is an algebraically closed field containing B . If b ∈ B is
integral over A, then σ(b) ∈ σ(B) is integral over A.

5. If b ∈ B is a root of a non-zero polynomial f (X) = anXn + · · · ∈ A[X],
then an−1

n f (b) = 0 and g(anb) = 0 for g(X) = Xn + an−1X
n−1 + · · · + an−1

n a0 ,
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g(anX) = an−1
n f (X). Hence anb is integral over A. Thus, for every algebraic over

A element b of B there is a non-zero A-multiple ab which is integral over A.

2.1.2. Corollary. Let A be a subring of an integral domain B . Let I be an A-module
of finite type, I ⊂ B . Let b ∈ B satisfy the property bI ⊂ I . Then b is integral over
A.

Proof. Indeed, as in the proof of (iii) ⇒ (i) we deduce that dc = 0 for all c ∈ I .
Since B is an integral domain, we deduce that d = 0, so d = f (b) = 0.

2.1.3. Proposition. Let A be a subring of a ring B , and let bi ∈ B be such that bi is
integral over A[b1, . . . , bi−1] for all i. Then A[b1, . . . , bn] is an A-module of finite
type.

Proof. Induction on n. n = 1 is the previous proposition. If C = A[b1, . . . , bn−1]
is an A-module of finite type, then C =

∑m
i=1 ciA. Now by the previous proposition

C[bn] is a C -module of finite type, so C[bn] =
∑l

j=1 djC . Thus, C[bn] =
∑

i,j djciA
is an A-module of finite type.

2.1.4. Corollary 1. If b1, b2 ∈ B are integral over A, then b1 + b2, b1 − b2, b1b2 are
integral over A.

Certainly b1/b2 isn’t necessarily integral over A.

Corollary 2. The set B′ of elements of B which are integral over A is a subring of
B containing A.

Definition. B′ is called the integral closure of A in B . If A is an integral domain
and B is its field of fractions, B ′ is called the integral closure of A .

A ring A is called integrally closed if A is an integral domain and A coincides
with its integral closure in its field of fractions.

Let F be an algebraic number field. The integral closure of Z in F is called the
ring OF of (algebraic) integers of F .

Examples. 1. A UFD is integrally closed. Indeed, if x = a/b with relatively prime
a, b ∈ A is a root of polynomial f (X) = Xn + · · · + a0 ∈ A[X], then b divides an ,
so b is a unit of A and x ∈ A.

In particular, the integral closure of Z in Q is Z.
2. OF is integrally closed (see below in 2.1.6).

2.1.5. Lemma. Let A be integrally closed. Let B be a field. Then an element b ∈ B is
integral over A iff the monic irreducible polynomial fb(X) ∈ F [X] over the fraction
field F of A has coefficients in A.
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Proof. Let L be a finite extension of F which contains B and all σ(b) for all
F -homomorphisms from B to an algebraically closed field C . Since b ∈ L is integral
over A, σ(b) ∈ L is integral over A for every σ. Then fb(X) =

∏
(X − σ(b)) has

coefficients in F which belong to the ring generated by A and all σ(b) and therefore
are integral over A. Since A is integrally closed, fb(X) ∈ A[X].

If fb(X) ∈ A[X] then b is integral over A by 2.1.1.

Examples. 1. Let F be an algebraic number field. Then an element b ∈ F is integral
iff its monic irreducible polynomial has integer coefficients.

For example,
√

d for integer d is integral.
If d ≡ 1 mod 4 then the monic irreducible polynomial of (1 +

√
d)/2 over Q is

X2 − X + (1 − d)/4 ∈ Z[X], so (1 +
√

d)/2 is integral. Note that
√

d belongs to
Z[(1 +

√
d)/2], and hence Z[

√
d] is a subring of Z[(1 +

√
d)/2].

Thus, the integral closure of Z in Q(
√

d) contains the subring Z[
√

d] and the
subring Z[(1 +

√
d)/2] if d ≡ 1 mod 4. We show that there are no other integral

elements.
An element a + b

√
d with rational a and b 6= 0 is integral iff its monic irreducible

polynomial X2−2aX +(a2−db2) belongs to Z[X]. Therefore 2a, 2b are integers. If
a = (2k+1)/2 for an integer k, then it is easy to see that a2−db2 ∈ Z iff b = (2l+1)/2
with integer l and (2k + 1)2 − d(2l + 1)2 is divisible by 4. The latter implies that d
is a quadratic residue mod 4, i.e. d ≡ 1 mod 4. In turn, if d ≡ 1 mod 4 then every
element (2k + 1)/2 + (2l + 1)

√
d/2 is integral.

Thus, integral elements of Q(
√

d) are equal to
{

Z[
√

d] if d 6≡ 1 mod 4
Z[(1 +

√
d)/2] if d ≡ 1 mod 4

2. OQm is equal to Z[ζm] (see section 2.4).

2.1.6. Definition. B is said to be integral over A if every element of B is integral
over A. If B is of characteristic zero, its elements integral over Z are called integral
elements of B .

Lemma. If B is integral over A and C is integral over B , then C is integral over
A.

Proof. Let c ∈ C be a root of the polynomial f (X) = Xn + bn−1X
n−1 + · · ·+ b0 with

bi ∈ B . Then c is integral over A[b0, . . . , bn−1]. Since bi ∈ B are integral over A,
proposition 2.1.3 implies that A[b0, . . . , bn−1, c] is an A-module of finite type. From
2.1.1 we conclude that c is integral over A.

Corollary. OF is integrally closed
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Proof. An element of F integral over OF is integral over Z due to the previous
lemma.

2.1.7. Proposition. Let B be an integral domain and A be its subring such that B is
integral over A. Then B is a field iff A is a field.

Proof. If A is a field, then A[b] for b ∈ B\0 is a vector space of finite dimension over
A, and the A-linear map ϕ: A[b] → A[b], ϕ(c) = bc is injective, therefore surjective,
so b is invertible in B .

If B is a field and a ∈ A\0, then the inverse a−1 ∈ B satisfies a−n +an−1a
−n+1 +

· · · + a0 = 0 with some ai ∈ A. Then a−1 = −an−1 − · · · − a0a
n−1 , so a−1 ∈ A.

2.2. Norms and traces

2.2.1. Definition. Let A be a subring of a ring B such that B is a free A-module
of finite rank n. For b ∈ B its trace TrB/A(b), norm NB/A(b) and characteristic
polynomial gb(X) are the trace, the norm and the characteristic polynomial of the
linear operator mb: B → B , mb(c) = bc. In other words, if Mb is a matrix of the
operator mb with respect to a basis of B over A, then gb(X) = det(XE − Mb),
TrB/A(b) = Tr Mb , NB/A = det Mb .

If gb(X) = Xn +an−1X
n−1 + · · ·+a0 then from the definition an−1 = −TrB/A(b),

a0 = (−1)nNB/A(b).

2.2.2. First properties.

Tr(b + b′) = Tr(b) + Tr(b′), Tr(ab) = a Tr(b), Tr(a) = na,

N (bb′) = N (b)N (b′), N (ab) = anN (b), N (a) = an

for a ∈ A.

2.2.3. Everywhere below in this section F is either a finite field of a field of charac-
teristic zero. Then every finite extension of F is separable.

Proposition. Let L be an algebraic extension of F of degree n. Let b ∈ L and
b1, . . . , bn be roots of the monic irreducible polynomial of b over F each one repeated
|L : F (b)| times. Then the characteristic polynomial gb(X) of b with respect to L/F
is

∏
(X − bi), and TrL/F (b) =

∑
bi, NL/F (b) =

∏
bi .

Proof. If L = F (b), then use the basis 1, b, . . . , bn−1 to calculate gb . Let fb(X) =
Xn + cn−1X

n−1 + · · · + c0 be the monic irreducible polynomial of b over F , then the
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matrix of mb is

Mb =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−c0 −c1 −c2 . . . −cn−1


 .

Hence gb(X) = det(XE −Mb) = fb(X) and det Mb =
∏

bi , Tr Mb =
∑

bi .
In the general case when |F (b) : F | = m < n choose a basis ω1, . . . , ωn/m of

L over F (b) and take ω1, . . . , ω1b
m−1, ω2, . . . , ω2b

m−1, . . . as a basis of L over
F . The matrix Mb is a block matrix with the same block repeated n/m times on
the diagonal and everything else being zero. Therefore, gb(X) = fb(X)|L:F (b)| where
fb(X) is the monic irreducible polynomial of b over F .

Example. Let F = Q, L = Q(
√

d) with square-free integer d. Then

ga+b
√

d(X) = (X − a− b
√

d)(X − a + b
√

d) = X2 − 2aX + (a2 − db2),

so
Tr

Q(
√

d)/Q
(a + b

√
d) = 2a, N

Q(
√

d)/Q
(a + b

√
d) = a2 − db2.

In particular, an integer number c is a sum of two squares iff c ∈ NQ(
√
−1)/QOQ(

√
−1) .

More generally, c is in the form a2 − db2 with integer a, b and square-free d not
congruent to 1 mod 4 iff

c ∈ N
Q(

√
d)/Q

Z[
√

d]

2.2.4. Corollary 1. Let σi be distinct F -homomorphisms of L into C . Then TrL/F (b) =∑
σib, NL/F (b) =

∏
σi(b).

Proof. In the previous proposition bi = σi(b).

Corollary 2. Let A be an integral domain, F be its field of fractions. Let L be an
extension of F of finite degree. Let A′ be the integral closure of A in F . Then for
an integral element b ∈ L over A gb(X) ∈ A′[X] and TrL/F (b), NL/F (b) belong to
A′ .

Proof. All bi are integral over A.

Corollary 3. If, in addition, A is integrally closed, then TrL/F (b), NL/F (b) ∈ A.

Proof. Since A is integrally closed, A′ ∩ F = A.

2.2.5. Lemma. Let F be a finite field of a field of characteristic zero. If L is a finite
extension of F and M/F is a subextension of L/F , then the following transitivity
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property holds

TrL/F = TrM/F ◦TrL/M , NL/F = NM/F ◦NL/M .

Proof. Let σ1, . . . , σm be all distinct F -homomorphisms of M into C ( m = |M :
F | ). Let τ1, . . . , τn/m be all distinct M -homomorphisms of L into C ( n/m = |L :
M | ). The field τj (L) is a finite extension of F , and by 1.2.5 there is an element aj ∈ C
such that τj (L) = F (aj). Let E be the minimal subfield of C containing M and all
aj . Using 1.2.3 extend σi to σ′

i: E → C . Then the composition σ′
i ◦ τj : L → C is

defined. Note that σ′
i ◦ τj = σ′

i1
◦ τj1 implies σi = σ′

i ◦ τj |M = σ′
i1
◦ τj1 |M = σi1 , so

i = i1 , and then j = j1 . Hence σ′
i ◦ τj for 1 6 i 6 m, 1 6 j 6 n/m are all n distinct

F -homomorphisms of L into C . By Corollary 3 in 2.2.4

NM/F (NL/M (b)) = NM/F (
∏

τj (b)) =
∏

σ′
i(

∏
τj(b)) =

∏
(σ′

i ◦ τj)(b) = NL/F (b).

Similar arguments work for the trace.

2.3. Integral basis

2.3.1. Definition. Let A be a subring of a ring B such that B is a free A-module
of rank n. Let b1, . . . , bn ∈ B . Then the discriminant D(b1, . . . , bn) is defined as
det(TrB/A(bibj)).

2.3.2. Proposition. If ci ∈ B and ci =
∑

aijbj , aij ∈ A, then D(c1, . . . , cn) =
(det(aij ))2 D(b1, . . . , bn).

Proof. (ci)t = (aij )(bj )t , (ckcl) = (ck)t(cl) = (aki)(bibj )(alj )t ,
(Tr(ckcl)) = (aki)(Tr(bibj ))(alj )t .

2.3.3. Definition. The discriminant DB/A of B over A is the principal ideal of A
generated by the discriminant of any basis of B over A.

2.3.4. Proposition. Let DB/A 6= 0. Let B be an integral domain. Then a set b1, . . . , bn

is a basis of B over A iff D(b1, . . . , bn)A = DB/A .

Proof. Let D(b1, . . . , bn)A = DB/A . Let c1, . . . , cn be a basis of B over A and
let bi =

∑
j aijcj . Then D(b1, . . . , bn) = det(aij )2D(c1, . . . , cn). Denote d =

D(c1, . . . , cn).
Since D(b1, . . . , bn)A = D(c1, . . . , cn)A, we get aD(b1, . . . , bn) = d for some

a ∈ A. Then d(1−a det(aij )2) = 0 and det(aij ) is invertible in A, so the matrix (aij )
is invertible in the ring of matrices over A. Thus b1, . . . , bn is a basis of B over A.
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2.3.5. Proposition. Let F be a finite field or a field of characteristic zero. Let L be
an extension of F of degree n and let σ1, . . . , σn be distinct F -homomorphisms of
L into C . Let b1, . . . , bn be a basis of L over F . Then

D(b1, . . . , bn) = det(σi(bj ))2 6= 0.

Proof. det(Tr(bibj )) = det(
∑

k σk(bi)σk(bj )) = det((σk(bi))t(σk(bj ))) = det(σi(bj ))2 .
If det(σi(bj )) = 0, then there exist ai ∈ L not all zero such that

∑
i aiσi(bj ) = 0 for

all j . Then
∑

i aiσi(b) = 0 for every b ∈ L.
Let

∑
a′

iσi(b) = 0 for all b ∈ L with the minimal number of non-zero a′
i ∈ A.

Assume a′
1 6= 0.

Let c ∈ L be such that L = F (c) (see 1.2.5), then σ1(c) 6= σi(c) for i > 1.
We now have

∑
a′

iσi(bc) =
∑

a′
iσi(b)σi(c) = 0. Hence σ1(c)(

∑
a′

iσi(b))−∑
a′

iσi(b)σi(c) =∑
i>1 a′

i(σ1(c)− σi(c))σi(b) = 0. Put a′′
i = a′

i(σ1(c) − σi(c)), so
∑

a′′
i σi(b) = 0 with

smaller number of non-zero a′′
i than in a′

i , a contradiction.

Corollary. Under the assumptions of the proposition the linear map L→ HomF (L,F ):
b→ (c→ TrL/F (bc)) between n-dimensional F -vector spaces is injective, and hence
bijective. Therefore for a basis b1, . . . , bn of L/F there is a dual basis c1, . . . , cn of
L/F , i.e. TrL/F (bicj) = δij .

Proof. If b =
∑

aibi , ai ∈ F and TrL/F (bc) = 0 for all c ∈ L, then we get equations∑
ai TrL/F (bibj ) = 0 – this is a system of linear equations in ai with nondegenerate

matrix TrL/F (bibj ), so the only solution is ai = 0. Elements of the dual basis cj

correspond to fj ∈ HomF (L,F ), fj(bi) = δij .

2.3.6. Theorem. Let A be an integrally closed ring and F be its field of fractions. Let
L be an extension of F of degree n and A′ be the integral closure of A in L. Let F
be of characteristic 0. Then A′ is an A-submodule of a free A-module of rank n.

Proof. Let e1, . . . , en be a basis of F -vector space L. Then due to Example 5 in 2.1.1
there is 0 6= ai ∈ A such that aiei ∈ A′ . Then for a =

∏
ai we get bi = aei ∈ A′

form a basis of L/F .
Let c1, . . . , cn be the dual basis for b1, . . . , bn . Claim: A′ ⊂

∑
ciA. Indeed, let

c =
∑

aici ∈ A′ . Then

TrL/F (cbi) =
∑

j

aj TrL/F (cjbi) = ai ∈ A

by 2.2.5. Now
∑

ciA = ⊕ciA, since {ci} is a basis of L/F .

2.3.7. Theorem (on integral basis). Let A be a principal ideal ring and F be its
field of fractions of characteristic 0. Let L be an extension of F of degree n. Then
the integral closure A′ of A in L is a free A-module of rank n.
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In particular, the ring of integers OF of a number field F is a free Z-module of
rank equal to the degree of F .

Proof. The description of modules of finite type over PID and the previous theorem
imply that A′ is a free A-module of rank m 6 n. On the other hand, by the first part
of the proof of the previous theorem A′ contains n A-linear independent elements
over A. Thus, m = n.

Definition. The discriminant dF of any integral basis of OF is called the discriminant
of F . Since every two integral bases are related via an invertible matrix with integer
coefficients (whose determinant is therefore ±1 ), 2.3.2 implies that dF is uniquely
determined.

2.3.8. Examples. 1. Let d be a square-free integer. By 2.1.5 the ring of integers of
Q(
√

d) has an integral basis 1, α where α =
√

d if D 6≡ 1 mod 4 and α = (1 +
√

d)/2
if d ≡ 1 mod 4.

The discriminant of Q(
√

d) is equal to
4d if d 6≡ 1 mod 4 , and d if d ≡ 1 mod 4 .

To prove this calculate directly D(1, α) using the definitions, or use 2.3.9.
2. Let F be an algebraic number field of degree n and let a ∈ F be an inte-

gral element over Z. Assume that D(1, a, . . . , an−1) is a square free integer. Then
1, a, . . . , an−1 is a basis of OF over Z, so OF = Z[a]. Indeed: choose a ba-
sis b1, . . . , bn of OF over Z and let {c1, . . . , cn} = {1, a, . . . , an−1}. Let ci =∑

aijbj . By 2.3.2 we have D(1, a, . . . , an−1) = (det(aij )2D(b1, . . . , bn). Since
D(1, a, . . . , an−1) is a square free integer, we get det(aij ) = ±1, so (aij ) is invertible
in Mn(Z), and hence 1, a, . . . , an−1 is a basis of OF over Z.

2.3.9. Example. Let F be of characteristic zero and L = F (b) be an extension of
degree n over F . Let f (X) be the minimal polynomial of b over F whose roots are
bi . Then

f (X) =
∏

(X − bj ), f ′(bi) =
∏

j 6=i

(bi − bj ),

NL/F f ′(b) =
∏

i

f ′(σib) =
∏

i

f ′(bi).

Then
D(1, b, . . . , bn−1) = det(bj

i )2

= (−1)n(n−1)/2
∏

i6=j

(bi − bj ) = (−1)n(n−1)/2NL/F (f ′(b)).

Let f (X) = Xn + aX + c. Then
bn = −ab− c, bn−1 = −a− cb−1
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and
e = f ′(b) = nbn−1 + a = n(−a− cb−1) + a,

so
b = −nc(e + (n− 1)a)−1.

The minimal polynomial g(Y ) of e over F corresponds to the minimal polynomial
f (X) of b; it is the numerator of c−1f (−nc(y + (n− 1)a)−1), i.e.

g(Y ) = (Y + (n− 1)a)n − na(Y + (n− 1)a)n−1 + (−1)nnncn−1.

Hence
NL/F (f ′(b)) = g(0)(−1)n

= nncn−1 + (−1)n−1(n− 1)n−1an,

so
D(1, b, . . . , bn−1)
= (−1)n(n−1)/2(nncn−1 + (−1)n−1(n− 1)n−1an).

For n = 2 one has a2 − 4c, for n = 3 one has −27c2 − 4a3 .
For example, let f (X) = X3 + X + 1. It is irreducible over Q. Its discriminant is

equal to (−31), so according to example 2.5.3 OF = Z[a] where a is a root of f (X)
and F = Q[a].

2.4. Cyclotomic fields

2.4.1. Definition. Let ζn be a primitive n th root of unity. The field Q(ζn) is called
the ( n th) cyclotomic field.

2.4.2. Theorem. Let p be a prime number and z be a primitive p th root of unity. The
cyclotomic field Q(ζp) is of degree p − 1 over Q. Its ring of integers coincides with
Z[ζp].

Proof. Denote z = ζp . Let f (X) = (Xp − 1)/(X − 1) = Xp−1 + · · · + 1. Recall that
z − 1 is a root of the polynomial g(Y ) = f (1 + Y ) = Y p−1 + · · · + p is a p-Eisenstein
polynomial, so f (X) is irreducible over Q, |Q(z) : Q| = p− 1 and 1, z, . . . , zp−2 is
a basis of the Q-vector space Q(z).

Let O be the ring of integers of Q(z). Since the monic irreducible polynomial
of z over Q has integer coefficients, z ∈ O. Since z−1 is a primitive root of unity,
z−1 ∈ O. Thus, z is a unit of O.

Then zi ∈ O for all i ∈ Z ( z−1 = zp−1 ). We have 1−zi = (1−z)(1+ · · ·+zi−1) ∈
(1− z)O.
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Denote by Tr and N the trace and norm for Q(z)/Q. Note that Tr(z) = −1 and
since zi for 1 6 i 6 p−1 are primitive p th roots of unity, Tr(zi) = −1; Tr(1) = p−1.
Hence

Tr(1− zi) = p for 1 6 i 6 p− 1 .
Furthermore, N (z−1) is equal to the free term of g(Y ) times (−1)p−1 , so N (z−1) =
(−1)p−1p and

N (1− z) =
∏

16i6p−1
(1− zi) = p,

since 1 − zi are conjugate to 1 − z over Q. Therefore pZ is contained in the ideal
I = (1− z)O ∩ Z.

If I = Z, then 1− z would be a unit of O and so would be its conjugates 1− zi ,
which then implies that p as their product would be a unit of O. Then p−1 ∈ O∩Q = Z,
a contradiction. Thus,

I = (1− z)O ∩ Z = pZ.

Now we prove another auxiliary result:

Tr((1− z)O) ⊂ pZ.

Indeed, every conjugate of y(1−z) for y ∈ O is of the type yi(1−zi) with appropriate
yi ∈ O, so Tr(y(1− z)) =

∑
yi(1− zi) ∈ I = pZ.

Now let x =
∑

06i6p−2 aiz
i ∈ O with ai ∈ Q. We aim to show that all ai belong

to Z. From the calculation of the traces of zi it follows that Tr((1−z)x) = a0 Tr(1−z)+∑
0<i6p−2 ai Tr(zi−zi+1) = a0p and so a0p ∈ Tr((1−z)O) ⊂ pZ; therefore, a0 ∈ Z.

Since z is a unit of O, we deduce that x1 = z−1(x−a0) = a1+a2z+ · · ·+ap−2z
p−3 ∈ O.

By the same arguments a1 ∈ Z. Looking at xi = z−1(xi−1 − ai−1) ∈ O we conclude
ai ∈ Z for all i. Thus O = Z[z].

2.4.3. The discriminant of O/Z is the ideal of Z generated by D(1, z, . . . , zp−2)
which by 2.3.9 is equal (−1)(p−1)(p−2)/2N (f ′(z)). We have f ′(z) = pzp−1/(z − 1) =
pz−1/(z − 1) and N (f ′(z)) = N (p)N (z)−1/N (z − 1) = pp−1(−1)p−1/((−1)p−1p) =
pp−2 . Thus, the discriminant of OZ is the principal ideal (−1)(p−1)(p−2)/2 pp−2Z =
pp−2Z.

2.4.4. In general, the extension Q(ζm)/Q is a Galois extension and elements of the
Galois group Gal(Q(ζm)/Q) are determined by their action on the primitive m th root
ζm of unity:

σ 7→ i : σ(ζm) = ζi
m, (i,m) = 1.

This map induces a group isomorphism

Gal(Q(ζm)/Q)→ (Z/mZ)×.
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One can prove that the ring of integers of Q(ζm) is Z(ζm).
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3. Dedekind rings

3.1. Noetherian rings

3.1.1. Recall that a module M over a ring is called a Noetherian module if one of the
following equivalent properties is satisfied:

(i) every submodule of M is of finite type;
(ii) every increasing sequence of submodules stabilizes;
(iii) every nonempty family of submodules contains a maximal element with respect

to inclusion.
A ring A is called Noetherian if it is a Noetherian A-module.
Example. A PID is a Noetherian ring, since every ideal of it is generated by one

element.

Lemma. Let M be an A-module and N is a submodule of M . Then M is a Noethe-
rian A-module iff N and M/N are.

Corollary 1. If Ni are Noetherian A-modules, so is ⊕n
i=1Ni .

Corollary 2. Let A be a Noetherian ring and let M be an A-module of finite type.
Then M is a Noetherian A-module.

3.1.2. Proposition. Let A be a Noetherian integrally closed ring. Let K be its field of
fractions and let L be a finite extension of K . Let A′ be the integral closure of A in
L. Suppose that K is of characteristic 0. Then A′ is a Noetherian ring.

Proof. According to 2.3.6 A′ is a submodule of a free A-module of finite rank. Hence
A′ is a Noetherian A-module. Every ideal of A′ is in particular an A-submodule of
A′ . Hence every increasing sequence ideals of A′ stabilizes and A′ is a Noetherian
ring.

3.1.3. Example. The ring of integers OF of a number field F is a Noetherian ring.
It is a Z-module of rank n where n is the degree of F .

Every nonzero element of OF \{0} factorizes into a product of prime elements and
units (not uniquely in general).

Indeed, assume the family of principal ideals (a) which are generated by elements
OF which are not products of prime elements is nonempty and then choose a maximal
element (a) in this family. The element a is not a unit, and A isn’t prime. Hence there
is a factorization a = bc with both b, c 6∈ O∗

F . Then (b), (c) are strictly larger than (a),
so b and c are products of prime elements. Then a is, a contradiction.
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3.2. Dedekind rings

3.2.1. Definition. An integral domain A is called a Dedekind ring if
(i) A is a Noetherian ring;
(ii) A is integrally closed;
(iii) every non-zero (proper) prime ideal of A is maximal.

Example. Every principal ideal domain A is a Dedekind ring.
Proof: for (i) see 3.1.1 and for (ii) see 2.1.4. If (a) is a prime ideal and (a) ⊂ (b) 6= A,

then b isn’t a unit of A and b divides a. Write a = bc. Since (a) is prime, either
b or c belongs to (a). Since b doesn’t, c must belong to (a), so c = ad for some
d ∈ A. Therefore a = bc = bda which means that b is a unit of A, a contradiction.
Thus, property (iii) is satisfied as well.

3.2.2. Lemma. Let A be an integral domain. Let K be its field of fractions and let
L be a finite extension of K . Let B be the integral closure of A in L. Let P be a
non-zero prime ideal of B . Then P ∩A is a non-zero prime ideal of A.

Proof. Let P be a non-zero prime ideal of B . Then P ∩ A 6= A, since otherwise
1 ∈ P ∩A and hence P = B .

If c, d ∈ A and cd ∈ P ∩A, then either c ∈ P ∩A or d ∈ P ∩A. Hence P ∩A
is a prime ideal of A.

Let b ∈ P , b 6= 0. Then b satisfies a polynomial relation bn+an−1b
n−1+ · · ·+a0 = 0

with ai ∈ A. We can assume that a0 6= 0. Then a0 = −(bn + · · · + a1b) ∈ A ∩ P , so
P ∩A is a non-zero prime ideal of A.

3.2.3. Theorem. Let A be a Dedekind ring. Let K be its field of fractions and let L
be a finite extension of K . Let B be the integral closure of A in L. Suppose that K
is of characteristic 0. Then B is a Dedekind ring.

Proof. B is Noetherian by 3.1.2. It is integrally closed due to 2.1.6. By 3.2.2 if P is
a non-zero proper prime ideal of B , then P ∩A is a non-zero prime ideal of A. Since
A is a Dedeking ring, it is a maximal ideal of A. The quotient ring B/P is integral
over the field A/(P ∩A). Hence by 2.1.7 B/P is a field and P is a maximal ideal of
B .

3.2.4. Example. The ring of integers OF of a number field F is a Dedekind ring.



2007/2008 21

3.3. Factorization in Dedekind rings

3.3.1. Lemma. Every non-zero ideal in a Dedekind ring A contains some product of
maximal ideals.

Proof. If not, then the set of non-zero ideals which do not contain products of maximal
ideals is non-empty. Let I be a maximal element with this property. The ideal I
isn’t maximal, since it doesn’t contain a product of maximal ideals. Therefore there
are a, b ∈ A such that ab ∈ I and a, b 6∈ I . Since I + aA and I + bA are strictly
greater than I , there are maximal ideals Pi and Qj such that

∏
Pi ⊂ I + aA and∏

Qj ⊂ I + bA. Then
∏

Pi

∏
Qj ⊂ (I + aA)(I + bA) ⊂ I , a contradiction.

3.3.2. Lemma. Let a prime ideal P of A contain I1 . . . Im , where Ij are ideals of
A. Then P contains one of Ij .

Proof. If Ik 6⊂ P for all 1 6 k 6 m, then take ak ∈ Ik \P and consider the product
a1 . . . am . It belongs to P , therefore one of ai belongs to P , a contradiction.

3.3.3. The next proposition shows that for every non-zero ideal I of a Dedekind ring
A there is an ideal J such that IJ is a principal non-zero ideal of A. Moreover, the
proposition gives an explicit description of J .

Proposition. Let I be a non-zero ideal of a Dedekind ring A and b be a non-zero
element of I . Let K be the field of fractions of A. Define

J = {a ∈ K : aI ⊂ bA}.
Then J is an ideal of A and IJ = bA.

Proof. Since b ∈ I , we get bA ⊂ I .
If a ∈ J then aI ⊂ bA ⊂ I , so aI ⊂ I . Now we use the Noetherian and integrality

property of Dedekind rings: Since I is an A-module of finite type, by Remark in 2.1.1
a is integral over A. Since A is integrally closed, a ∈ A. Thus, J ⊂ A.

The set J is closed with respect to addition and multiplication by elements of A,
so J is an ideal of A. It is clear that IJ ⊂ bA. Assume that IJ 6= bA and get a
contradiction.

The ideal b−1IJ is a proper ideal of A, and hence it is contained in a maximal
ideal P . Note that b ∈ J , since bI ⊂ bA. So b2 ∈ IJ and b ∈ b−1IJ , bA ⊂ b−1IJ .
By 3.3.1 there are non-zero prime ideals Pi such that P1 . . . Pm ⊂ bA. Let m be the
minimal number with this property.

We have
P1 . . . Pm ⊂ bA ⊂ b−1IJ ⊂ P.
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By 3.3.2 P contains one of Pi . Without loss of generality we can assume that P1 ⊂ P .
Since P1 is maximal, P1 = P .

If m = 1, then P ⊂ bA ⊂ b−1IJ ⊂ P , so P = bA. Since bA ⊂ I we get P ⊂ I .
Since P is maximal, either I = P or I = A. The definition of J implies in the first
case J = {a ∈ K : aI = aP ⊂ bA = P} = A and IJ = bA and in the second case
b ∈ J implies bA ⊂ J = {a ∈ K : aA ⊂ bA} ⊂ {a ∈ K : a ∈ bA} = bA and so
J = bA and IJ = bA.

Let m > 1. Note that P2 . . . Pm 6⊂ bA due to the definition of m. Therefore,
there is d ∈ P2 . . . Pm such that d 6∈ bA. Since b−1IJ ⊂ P , db−1IJ ⊂ dP ⊂
PP2 . . . Pm ⊂ bA. So (db−1J )I ⊂ bA, and the defining property of J implies that
db−1J ⊂ J . Since J is an A-module of finite type, by 2.1.1 db−1 belongs to A, i.e.
d ∈ bA, a contradiction.

3.3.4. Corollary 1 (Cancellation property). Let I, J,H be non-zero ideals of A,
then IH = JH implies I = J .

Proof. Let H ′ be an ideal such that HH ′ = aA is a principal ideal. Then aI = aJ
and I = J .

3.3.5. Corollary 2 (Factorization property). Let I and J be ideals of A. Then
I ⊂ J if and only if I = JH for an ideal H .

Proof. If I ⊂ J and J is non-zero, then let J ′ be an ideal of A such that JJ ′ = aA
is a principal ideal. Then IJ ′ ⊂ aA, so H = a−1IJ ′ is an ideal of A. Now

JH = Ja−1IJ ′ = a−1IJJ ′ = a−1aI = I.

3.3.6. Theorem. Every proper ideal of a Dedekind ring factorizes into a product of
maximal ideals whose collection is uniquely determined.

Proof. Let I be a non-zero ideal of A. There is a maximal ideal P1 which contains
I . Then by the factorization property 3.3.5 I = P1Q1 for some ideal Q1 . Note
that I ⊂ Q1 is a proper inclusion, since otherwise AQ1 = Q1 = I = P1Q1 and by
the cancellation property 3.3.4 P1 = A, a contradiction. If Q1 6= A, then there is a
maximal ideal P2 such that Q1 = P2Q2 . Continue the same argument: eventually we
have I = P1 . . . PnQn and I ⊂ Q1 ⊂ · · · ⊂ Qn are all proper inclusions. Since A is
Noetherian, Qm = A for some m and then I = P1 . . . Pm .

If P1 . . . Pm = Q1 . . . Qn , then P1 ⊃ Q1 . . . Qn and by 3.3.2 P1 being a prime
ideal contains one of Qi , so P1 = Qi . Using 3.3.4 cancel P1 on both sides and use
induction.

3.3.7. Remark. A maximal ideal P of A is involved in the factorization of I iff
I ⊂ P .

Indeed, if I ⊂ P , then I = PQ by 3.3.5.
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3.3.8. Example. Let A = Z[
√
−5]. This is a Dedekind ring, since −5 6≡ 1 mod 4,

and A is the ring of integers of Q(
√
−5).

We have the norm map N (a + b
√
−5) = a2 + 5b2 . If an element u is a unit of A

then uv = 1 for some v ∈ A, and the product of two integers N (u) and N (v) is 1,
thus N (u) = 1. Conversely, if N (u) = 1 then u times its conjugate u′ is one, and so
u is a unit of A. Thus, u ∈ A× iff N (u) ∈ Z× .

The norms of 2, 3, 1 ±
√
−5 are 4, 9, 6. It is easy to see that 2, 3 are not in the

image N (A).
If, say, 2 were not a prime element in A, then 2 = π1π2 and 4 = N (π1)N (π2)

with both norms being proper divisors of 4, a contradiction. Hence 2 is a prime element
of A, and similarly 3, 1±

√
−5 are.

Now 2, 3, 1±
√
−5 are prime elements of A and

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Note that 2, 3, 1 ±
√
−5 are not associated with each other (the quotient is not a unit)

since their norms differ not by a unit of Z. Thus A isn’t a UFD.
The ideals

(2, 1 +
√
−5), (3, 1 +

√
−5), (3, 1 −

√
−5)

are maximal.
For instance, |A/(2)| = 4, and it is easy to show that A 6= (2, 1 +

√
−5) 6= (2), so

|A/(2, 1 +
√
−5)| = 2, therefore A/(2, 1 +

√
−5) is isomorphic to Z/2Z, i.e. is a field.

We get factorization of ideals

(2) = (2, 1 +
√
−5)2,

(3) = (3, 1 +
√
−5)(3, 1−

√
−5),

(1 +
√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5),

(1−
√
−5) = (2, 1 +

√
−5)(3, 1−

√
−5).

To prove the first equality note that (1 +
√
−5)2 = −4 + 2

√
−5 ∈ (2), so the

RHS⊂LHS; we also have 2 = 2(1 +
√
−5)− 22 − (1 +

√
−5)2 ∈RHS, so LHS = RHS.

For the second equality use (1+
√
−5)(1−

√
−5) = 6 ∈ (3), 3 = 32− (1+

√
−5)(1−√

−5) ∈RHS.
For the third equality use 6 ∈ (1+

√
−5), 1+

√
−5 = 3(1+

√
−5)−2(1+

√
−5) ∈RHS.

For the fourth equality use conjugate the third equality and use (2, 1 +
√
−5) =

(2, 1−
√
−5).

Thus
(2) · (3) = (2, 1 +

√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5)

= (2, 1 +
√
−5)(3, 1 +

√
−5)(2, 1 +

√
−5)(3, 1−

√
−5)

= (1 +
√
−5)(1−

√
−5).
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3.3.9. Lemma. Let I + J = A. Then In + Jm = A for every n,m > 1.

Proof. We have A = (I + J ) . . . (I + J ) = I(...) + Jm ⊂ I + Jm, so I + Jm = A.
Similarly In + Jm = A.

Proposition. Let P be a maximal ideal of A. Then there is an element π ∈ P such
that

P = πA + P n

for every n > 2.
Hence the ideal P/P n is a principal ideal of the factor ring A/P n . Moreover, it

is the only maximal ideal of that ring.
Every ideal of the ring A/P n is principal of the form P m/P n = (πmA + P n)/P n

for some m 6 n.

Proof. If P = P 2, then P = A by cancellation property, a contradiction. Let π ∈
P \ P 2 . Since πA + P n ⊂ P , factorization property implies that πA + P n = PQ for
an ideal Q.

Note that Q 6⊂ P , since otherwise π ∈ P 2 , a contradiction.
Therefore, P + Q = A. The Lemma implies P n−1 + Q = A. Then

P = P (Q + P n−1) ⊂ PQ + P n = πA + P n ⊂ P,

so P = πA + P n .
For m 6 n we deduce P m ⊂ πmA + P n ⊂ P m, so P m = πmA + P n .
Let I be a proper ideal of A containing P n . Then by factorization property

P n = IK with some ideal K . Hence the factorization of I involves powers of P
only, so I = P m, 0 < m 6 n. Hence ideals of A/P n are P m/P n with m 6 n.

3.3.10. Corollary. Every ideal in a Dedekind ring is generated by 2 elements.

Proof. Let I be a non-zero ideal, and let a be a non-zero element of I . Then
aA = P

n1
1 . . . P nm

m with distinct maximal ideals Pi.
By Lemma 3.3.9 we have P

n1
1 + P nk

k = A if l 6= k, so we can apply the Chinese
remainder theorem which gives

A/aA ' A/P
n1
1 × · · · × A/P nm

m .

For the ideal I/aA of A/aA we get

I/aA ' (I + P
n1
1 )/P

n1
1 × · · · × (I + P nm

m )/P nm

m .

Each of ideals (I + P ni

i )/P ni

i is of the form (πli
i A + P ni

i )/P ni

i by 3.3.9. Hence I/aA

is isomorphic to
∏

(πli
i A + P ni

i )/P ni

i . Using the Chinese remainder theorem find
b ∈ A such that b − πli

i belongs to P ni

i for all i. Then I/aA = (aA + bA)/aA and
I = aA + bA.
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3.3.11. Theorem. A Dedekind ring A is a UFD if and only if A is a PID.

Proof. Let A be not a PID. Since every proper ideal is a product of maximal ideals,
there is a maximal ideal P which isn’t principal. Consider the family F of non-zero
ideals I such that PI is principal. It is nonempty by 3.3.5. Let I be a maximal
element of this family and PI = aA, a 6= 0.

Note that I isn’t principal, because otherwise I = xA and PI = xP = aA, so
a is divisible by x. Put y = ax−1 , then (x)P = (x)(y) and by 3.3.4 P = (y), a
contradiction.

Claim: a is a prime element of A. First, a is not a unit of A: otherwise
P ⊃ PI = aA = A, a contradiction. Now, if a = bc, then bc ∈ P , so either b ∈ P or
c ∈ P . By 3.3.5 then either bA = PJ or cA = PJ for an appropriate ideal J of A.
Since PI ⊂ PJ , we get aI = IPI ⊂ IPJ = aJ and I ⊂ J . Note that J ∈ F. Due
to maximality of I we deduce that I = J , and hence either bA or cA is equal to aA.
Then one of b, c is asociated to a, so a is a prime element.

P 6⊂ aA, since otherwise aA = PI ⊂ aI , so A = I , a contradiction.
I 6⊂ aA, since otherwise aA ⊂ I implies aA = I , I is principal, a contradiction.
Thus, there are d ∈ P and e ∈ I not divisible by a. We also have ed ∈ PI = aA

is divisible by the prime element a. This can never happen in UFD. Thus, A isn’t a
UFD.

Using this theorem, to establish that the ring Z[
√
−5] of 3.3.8 is not a unique

factorization domain it is sufficient to indicate a non-principal ideal of it.

3.4. The norm of an ideal

In this subsection F is a number field of degree n, OF is the ring of integers of F .

3.4.1. Proposition. For a non-zero element a ∈ OF

|OF : aOF | = |NF/Q(a)|.

Proof. We know that OF is a free Z-module of rank n. The ideal aOF is a free
submodule of OF of rank n, since if x1, . . . , xm are generators of aOF , then
a−1x1, . . . , a−1xm are generators of OF , so m = n. By the theorem on the structure
of modules over principal ideal domains, there is a basis a1, . . . , an of OF such that
e1a1, . . . , enan is a basis of aOF with appropriate e1| . . . |en . Then OF /aOF is
isomorphic to

∏
Z/eiZ, so |OF : aOF | =

∏ |ei|. By the definition NF/Q(a) is equal
to the determinant of the matrix of the linear operator f : OF → OF , b → ab. Note
that aOF has another basis: aa1, . . . , aan , so (aa1, . . . , aan) = (e1a1, . . . , enan)M
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with an invertible matrix M with integer entries. Thus, the determinant of M is ±1
and NF/Q(a) is equal to ±

∏
ei .

3.4.2. Corollary. |OF : aOF | = |a|n for every non-zero a ∈ Z.

Proof. NF/Q(a) = an .

3.4.3. Definition. The norm N (I) of a non-zero ideal I of OF is its index |OF : I|.

Note that if I 6= 0 then N (I) is a finite number.
Indeed, by 3.4.1 N (aOF ) = |NF/Q(a)| for a non-zero a which belongs to I . Then

aOF ⊂ I and N (I) 6 N (aOF ) = |NF/Q(a)|.

3.4.4. Proposition. If I, J are non-zero ideals of OF , then N (IJ ) = N (I)N (J ).

Proof. Since every ideal factors into a product of maximal ideals by 3.3.6, it is sufficient
to show that N (IP ) = N (I)N (P ) for a maximal ideal P of OF .

The LHS = |OF : IP | = |OF : I||I : IP |. Recall that P is a maximal ideal of
OF , so OF /P is a field.

The quotient I/IP can be viewed as a vector space over OF /P . Its subspaces
correspond to ideals between IP and I according to the description of ideals of the
factor ring. If IP ⊂ J ⊂ I , then by 3.3.5 J = IQ for an ideal Q of OF .

By 3.3.3 there is a non-zero ideal I ′ such that II ′ is a principal non-zero ideal
aOF . Then IP ⊂ IQ implies aP ⊂ aQ implies P ⊂ Q. Therefore either Q = P
and then J = IP or Q = OF and then J = I . Thus, the only subspaces of the vector
space I/IP are itself and the zero subspace IP/IP . Hence I/IP is of dimension
one over OF /P and therefore |I : IP | = |OF : P |.

3.4.5. Corollary. If I is a non-zero ideal of OF and N (I) is prime, then I is a
maximal ideal.

Proof. If I = JK , then N (J )N (K) is prime, so, say, N (J ) = 1 and J = OF . So I
has no proper prime divisors, and therefore is a maximal ideal.

3.5. Splitting of prime ideals in field extensions

In this subsection F is a number field and L is a finite extension of F . Let OF and
OL be their rings of integers.
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3.5.1. Proposition-Definition. Let P be a maximal ideal of OF and Q a maximal
ideal of OL . Then Q is said to lie over P and P is said to lie under Q if one of the
following equivalent conditions is satisfied:

(i) POL ⊂ Q;
(ii) P ⊂ Q;
(iii) Q ∩OF = P .

Proof. (i) is equivalent to (ii), since 1 ∈ OL . (ii) implies Q ∩ OF contains P , so
either Q ∩ OF = P or Q ∩ OF = OF , the latter is impossible since 1 6∈ Q. (iii)
implies (ii).

3.5.2. Proposition. Every maximal ideal of OL lies over a unique maximal ideal P of
OF . For a maximal ideal P of OF the ideal POL is a proper non-zero ideal of OL .
Let POL =

∏
Qi be the factorization into a product of prime ideals of OL . Then Qi

are exactly those maximal ideals of OL which lie over P .

Proof. The first assertion follows from 3.2.2.
Note that by 3.3.3 for b ∈ P \ P 2 there is an ideal J of OF such that PJ = bOF .

Then J 6⊂ P , since otherwise b ∈ P 2, a contradiction. Take an element c ∈ J \ P .
Then cP ⊂ bOF .

If POL = OL , then cOL = cPOL ⊂ bOL , so cb−1 ∈ OL ∩ F = OF and
c ∈ bOF ⊂ P , a contradiction. Thus, POL is a proper ideal of OL .

According to 3.5.1 a prime ideal Q of OL lies over P iff POL ⊂ Q which is
equivalent by 3.3.7 to the fact that Q is involved in the factorization of POL .

3.5.3. Lemma. Let P be a maximal ideal of OF which lie under a maximal ideal Q
of OL . Then the finite field OF /P is a subfield of the finite field OL/Q.

Proof. OL/Q is finite by 3.4.3. The kernel of the homomorphism OF → OL/Q is
equal to Q ∩OF = P , so OF /P can be identified with a subfield of OL/Q.

3.5.4. Corollary. Let P be a maximal ideal of OF . Then P ∩ Z = pZ for a prime
number p and N (P ) is a positive power of p.

Proof. P ∩ Z = pZ for a prime number p by 3.2.2. Then OF /P is a vector space
over Z/pZ of finite positive dimension, therefore |OF : P | is a power of p.

3.5.5. Definition. Let a maximal ideal P of OF lie under a maximal ideal Q of
OL . The degree of OL/Q over OF /P is called the inertia degree f (Q|P ). If
POL =

∏
Qei

i is the factorization of POL with distinct prime ideals Qi of OL , then
ei is called the ramification index e(Qi|P ).
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3.5.6. Lemma. Let M be a finite extension of L and P ⊂ Q ⊂ R be maximal
ideals of OF , OL and OM correspondingly. Then f (R|P ) = f (Q|P )f (R|Q) and
e(R|P ) = e(Q|P )e(R|Q).

Proof. The first assertion follows from 1.1.1. Since POL = Qe(Q|P ) . . . , we get
POM = Qe(Q|P )OM · · · = (QOM )e(Q|P ) · · · = (Re(R|Q))e(Q|P ) . . . , so the second
assertion follows.

3.5.7. Theorem. Let Q1, . . . Qm be different maximal ideals of OL which lie over a
maximal ideal P of OF . Let n = |L : F |. Then

m∑

i=1
e(Qi|P )f (Qi|P ) = n.

Proof. We consider only the case F = Q. Apply the norm to the equality pOL =∏
Qei

i . Then by 3.4.2, 3.4.4

pn = N (pOL) =
∏

N (Qi)ei =
∏

pf (Qi|P )e(Qi|P ).

3.5.8. Example. One can describe in certain situations how a prime ideal (p) factorizes
in finite extensions of Q, provided the factorization of the monic irreducible polynomial
of an integral generator (if it exists) modulo p is known.

Let the ring of integers OF of an algebraic number field F be generated by one
element α: OF = Z[α], and f (X) ∈ Z[X] be the monic irreducible polynomial of α
over Q.

Let fi(X) ∈ Z[X] be monic polynomials such that

f (X) =
m∏

i=1
fi(X)ei ∈ Fp[X]

is the factorization of f (X) where fi(X) is an irreducible polynomial over Fp . Since
OF ' Z[X]/(f (X)), we have

OF /(p) ' Z[X]/(p, f (X)) ' Fp[X]/(f (X)),
and

OF /(p, fi(α)) ' Z[X]/(p, f (X), fi(X)) ' Fp[X]/(fi(X)).
Putting Pi = (p, fi(α)) we see that OF /Pi is isomorphic to the field Fp[X]/(fi(X)),
hence Pi is a maximal ideal of OF dividing (p). We also deduce that

N (Pi) = p|Fp[X]/(fi(X)):Fp| = pdeg fi .

Now
∏

P ei

i =
∏

(p, fi(α))ei ⊂ pOF , since
∏

fi(α)ei − f (α) ∈ pOF . We also
get N (

∏
P ei

i ) = p
∑

ei deg fi = pn = N (pOF ). Therefore from 3.5.7 we deduce that
(p) =

∏m
i=1 P ei

i is the factorization of (p).
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So we have proved

Theorem. Let the ring of integers OF of an algebraic number field F be generated by
one element α: OF = Z[α], and f (X) ∈ Z[X] be the monic irreducible polynomial
of α over Q. Let fi(X) ∈ Z[X] be irreducible polynomials such that

f (X) =
m∏

i=1
fi(X)ei ∈ Fp[X]

is the factorization of f (X) where fi(X) is an irreducible polynomial over Fp .
Then in OF

(p) =
m∏

i=1
P ei

i

where Pi = (p, fi(α)) is a maximal ideal of OF with norm pdeg fi .

Definition–Example. Let F = Q and L = Q(
√

d) with a square free integer d.
Let p be a prime in Z and let pOL =

∏m
i=1 Qei

i . Then there are three cases:
(i) m = 2, e1 = e2 = 1, f (Qi|P ) = 1. Then pOL = Q1Q2 , Q1 6= Q2 . We say that

p splits in L.
(ii) m = 1, e1 = 2, f (Q1|P ) = 1. Then pOL = Q2

1 . We say that p ramifies in L.
(iii) m = 1, e1 = 1, f (Q1|P ) = 2. Then pOL = Q1 . We say that p remains prime

in L.

Using the previous theorem we see that p remains prime in OF iff f is irreducible
over Fp; p splits ( pOF = P1 . . . Pm ) iff f is separable and reducible, and p ramifies
( pOF = P e ) iff f is a positive power of an irreducible polynomial over Fp.

3.5.9. In particular, if F = Q(
√

d) then one can take
√

d for d 6≡ 1 mod 4 and (1 +√
d)/2 for d ≡ 1 mod 4 as α. Then f (X) = X2−d and f (X) = X2−X + (1−d)/4

resp.
We have X2 − X + (1 − d)/4 = 1/4(Y 2 − d) where Y = 2X − 1, so if p is

odd (so the image of 2 is invertible in Fp ), the factorization of f (X) corresponds to
the factorization of X2 − d independently of what d is. The factorization of X2 − d
certainly depends on whether d is a quadratic residue modulo p, or not.

For p = 2 f (X) = (X − d)2 ∈ F2[X] and f (X) = X2 + X + (1− d)/4 ∈ F2[X]
resp.

Thus, we get

Theorem. If p is odd prime, then
p splits in L = Q(

√
d) iff d is a quadratic residue mod p.

p ramifies in L iff d is divisible by p.
p remains prime in L iff d is a quadratic non-residue mod p.
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If p = 2 then
if d ≡ 1 mod 8, then 2 splits in Q(

√
d),

if d 6≡ 1 mod 4 then 2 ramifies in Q(
√

d);
if d ≡ 1 mod 4, d 6≡ 1 mod 8 then 2 remains prime in Q(

√
d).

3.5.10. Let p be an odd prime. Recall from 2.4.2 that the ring of integers of the
p th cyclotomic field Q(ζp) is generated by ζp . Its irreducible monic polynomial is
f (X) = Xp−1 + · · · + 1 = (Xp − 1)/(X − 1). Since Xp − 1 ≡ (X − 1)p mod p we
deduce that (f (X), p) = ((X − 1)p−1, p). Therefore by 3.5.8 p = (ζp − 1)p−1 ramifies
in Q(ζp)/Q. For any other prime l one can show that the polynomial f (X) modulo l
is the product of distinct irreducible polynomials over Fl . Thus, no other prime ramifies
in Q(ζp)/Q.

3.6. Finiteness of the ideal class group

In this subsection OF is the ring of integers of a number field F .

3.6.1. Definition. For two non-zero ideals I and J of OF define the equivalence rela-
tion I ∼ J if there are non-zero a, b ∈ OF such that aI = bJ . Classes of equivalence
are called ideal classes. Define the product of two classes with representatives I and J
as the class containing IJ . Then the class of OF (consisting of all nonzero principal
ideals) is the indentity element. By 3.3.3 for every non-zero I there is a non-zero J
such that IJ is a principal ideal, i.e. every ideal class is invertible. Thus ideal classes
form an abelian group which is called the ideal class group CF of the number field F .

The ideal class group shows how far from PID the ring OF is. Note that CF

consists of one element iff OF is a PID iff OF is a UFD.

3.6.2. Proposition. There is a positive real number c such that every non-zero ideal I
of OF contains a non-zero element a with

|NF/Q(a)| 6 cN (I).

Proof. Let n = |F : Q|. According to 2.3.7 there is a basis a1, . . . , an of the
Z-module OF which is also a basis of the Q-vector space F . Let σ1, . . . , σn be all
distinct Q-homomorphisms of F into C. Put

c =
n∏

i=1

( n∑

j=1
|σiaj |

)
.

Then c > 0.
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For a non-zero ideal I let m be the positive integer satisfying the inequality
mn 6 N (I) < (m + 1)n . In particular, |OF : I| < (m + 1)n . Consider (m + 1)n
elements

∑n
j=1 mjaj with 0 6 mj 6 m, mj ∈ Z. There are two of them which

have the same image in OF /I . Their difference 0 6= a =
∑n

j=1 njaj belongs to I and
satisfies |nj | 6 m.

Now

|NF/Q(a)| =
n∏

i=1
|σia| =

n∏

i=1
|

n∑

j=1
njσiaj | 6

n∏

i=1

( n∑

j=1
|nj ||σiaj |

)
6 mnc 6 cN (I).

3.6.3. Corollary. Every ideal class of OF contains an ideal J with N (J ) 6 c.

Proof. Given ideal class, consider an ideal I of the inverse ideal class. Let a ∈ I be as
in the theorem. By 3.3.3 there is an ideal J such that IJ = aOF , so (I)(J ) = (aOF ) = 1
in CF . Then J belongs to the given ideal class. Using 3.4.1 and 3.4.4 we deduce that
N (I)N (J ) = N (IJ ) = N (aOF ) = |NF/Q(a)| 6 cN (I). Thus, N (J ) 6 c.

3.6.4. Theorem. The ideal class group CF is finite. The number |CF | is called the
class number of F .

Proof. By 3.5.4 and 3.5.2 for each prime p there are finitely many maximal ideals P
lying over (p), and N (P ) = pm for m > 1. Hence there are finitely many ideals∏

P ei

i satisfying N (
∏

P ei

i ) 6 c.

Example. The class number of Q(
√
−19) is 1, i.e. every ideal of the ring of integers

of Q(
√
−19) is principal.

Indeed, by 2.3.8 we can take a1 = 1, a2 = (1 +
√
−19)/2 as an integral basis of the

ring of integers of Q(
√
−19). Then

c =
(
1 + |(1 +

√
−19)/2|

)(
1 + |(1−

√
−19)/2|

)
= 10.4... .

So every ideal class of OQ(
√
−19) contains an ideal J with N (J ) 6 10. Let J =

∏
P ei

i

be the factorization of J , then N (Pi) 6 10 for every i.
By Corollary 3.5.4 we know that N (Pi) is a positive power of a prime integer, say

pi . From 3.5.2 we know that Pi is a prime divisor of the ideal (pi) of OQ(
√
−19) . So we

need to look at prime integer numbers not greater than 7 and their prime ideal divisors
as potential candidates for non-principal ideals. Now prime number 3 has the property
that -19 is a quadratic non-residue modulo them, so by Theorem 3.5.9 it remains prime
in OQ(

√
−19) .

Odd prime numbers 5, 7 have the property that -19 is a quadratic residue module
them, so by Theorem 3.5.9 they split in OQ(

√
−19) . It is easy to check that

5 =
(
(1 +
√
−19)/2

)(
(1−
√
−19)/2

)
,

7 =
(
(3 +
√
−19)/2

)(
(3−
√
−19)/2

)
..
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Each of ideals generated by a factor on the right hand side is prime by 3.4.5, since its
norm is a prime number. So prime ideal factors of (5), (7) are principal ideals.

Finally, 2 remains prime in OQ(
√
−19) , as follows from 3.5.9.

Thus, OQ(
√
−19) is a principal ideal domain.

Remark. The bound given by c is not good in practical applications. A more refined
estimation is given by Minkowski’s Theorem 3.6.6.

3.6.5. Definition. Let F be of degree n over Q. Let σ1, . . . , σn be all Q-homo-
morphisms of F into C. Let

τ : C→ C

be the complex conjugation. Then τ ◦ σi is a Q-homomorphism of F into C, so it
is equal to certain σj . Note that σi = τ ◦ σi iff σi(F ) ⊂ R. Let r1 be the number
of Q-homomorphisms of this type, say, after renumeration, σ1, . . . , σr1 . For every
i > r1 we have τ ◦ σj 6= σj , so we can form couples (σj , τ ◦ σj ). Then n− r1 is an
even number 2r2 , and r1 + 2r2 = n.

Renumerate the σj ’s so that σi+r2 = τ ◦ σi for r1 + 1 6 i 6 r1 + r2 . Define the
canonical embedding of F by

σ: a→ (σ1(a), . . . , σr1+r2 (a)) ∈ Rr1 × Cr2 , a ∈ F.

The field F is isomorphic to its image σ(F ) ⊂ Rr1 × Cr2 . The image σ(F ) is called
the geometric image of F and it can be partially studied by geometric tools.

3.6.6. Minkowski’s Bound Theorem. Let F be an algebraic number field of degree
n with parameters r1, r2 . Then every class of CF contains an ideal I such that its
norm N (I) satisfies the inequality

N (I) 6 (4/π)r2n!
√
|dF |/nn

where dF is the discriminant of F .

Proof. Use the geometric image of F and some geometric combinatorial considera-
tions. In particular, one uses Minkowski’s Lattice Point Theorem:

Let L be a free Z-module of rank n in an n-dimensional Euclidean vector space
V over R (then L is called a complete lattice in V ). Denote by Vol (L) the volume
of the set

{a1e1 + · · · + anen : 0 6 ai 6 1},
where e1, . . . , en is a basis of L. Notice that Vol (L) does not depend on the choice
of basis.

Let X be a centrally symmetric convex subset of V . Suppose that Vol (X) >
2nVol (L). Then X contains at least one nonzero point of L.
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3.6.7. Examples. 1. Let F = Q(
√

5). Then r1 = 2, r2 = 0, n = 2, |dF | = 5.

(4/π)r2n!
√
|dF |/nn = 2!

√
5/22 = 1.1...,

so N (I) = 1 and therefore I = OF . Thus, every ideal of OF is principal and
CF = {1}.

2. Let F = Q(
√
−5). Then r1 = 0, r2 = 1, n = 2, |dF | = 20, (2/π)

√
|20| < 3.

Hence, similar to Example in 3.6.4 we only need to look at prime numbers 2 ( < 3 ) and
prime ideal divisors of the ideal (2) as potential candidates for non-principal ideals.

From 3.3.8 we know that (2) = (2, 1 +
√
−5)2 and 2 = N (2, 1 +

√
−5). So the ideal

(2, 1 +
√
−5) is maximal by 3.4.5.

The ideal (2, 1 +
√
−5) is not principal: Indeed, if (2, 1 +

√
−5) = aOL then

2 = N (2, 1 +
√
−5) = N (aOL) = |NL/Q(a)|. If a = c + d

√
−5 with c, d ∈ Z we

deduce that c2 + 5d2 = ±2, a contradiction.
We conclude that C

Q(
√

−5) is a cyclic group of order 2.

3. Let F = Q(
√

14). Then r1 = 2, r2 = 0, n = 2, |dF | = 56 and (1/2)
√

56 =
3.7... < 4. So we only need to inspect prime ideal divisors of (2) and of (3).

Now 2 = (4 +
√

14)(4−
√

14), so (2) = (4 +
√

14)(4−
√

14). Since N (4±
√

14) = 2,
3.4.5 implies that the principal ideals (4 +

√
14), (4−

√
14) are prime.

14 is quadratic non-residue modulo 3, so by Theorem 3.5.9 we deduce that 3
remains prime in OF . Thus, every ideal of the ring of integers of Q(

√
14) is principal,

C
Q(

√
14) = {1}.

4. It is known that for negative square-free d the only quadratic fields Q(
√

d) with
class number 1 are the following:

Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11),

Q(
√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163).

For d > 0 there are many more quadratic fields with class number 1. Gauss
conjectured that there are infinitely many such fields, but this is still unproved.

3.6.8. Now we can state one of the greatest achivements of Kummer.

Kummer’s Theorem. Let p be an odd prime. Let F = Q(ζp) be the p th cyclotomic
field.

If p doesn’t divide |CF |,
or, equivalently, p does not divide numerators of (rational) Bernoulli numbers
B2, B4, . . . , Bp−3 given by

t

et − 1 =
∞∑

i=0

Bi

i! ti,
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then the Fermat equation

Xp + Y p = Zp

does not have positive integer solutions.

Among primes < 100 only 37, 59 and 67 don’t satisfy the condition that p does
not divide |CF |, so Kummer’s theorem implies that for any other prime number smaller
100 the Fermat equation does not have positive integer solutions.

3.7. Units of rings of algebraic numbers

3.7.1. Definition. A subgroup Y of Rn is called discrete if for every bounded closed
subset Z of Rn the intersection Y ∩ Z is finite.

Example: points of Rn with integer coordinates form a discrete subgroup.

3.7.2. Proposition. Let Y be a discrete subgroup of Rn . Then there are m linearly
independent over R vectors y1, . . . ym ∈ Y such that y1, . . . , ym is a basis of the
Z-module Y .

Proof. Let x1, . . . , xm be a set of linearly independent elements in Y over R with
the maximal m. Denote

L = {x ∈ Rn : x =
m∑

i=1
cixi : 0 6 ci 6 1}.

The set L is bounded and closed, so L ∩ Y is finite. For y ∈ Y write y =
∑m

i=1 bixi

with bi ∈ R. Define

z = y −
∑

[bi]xi =
∑

(bi − [bi])xi ∈ L ∩ Y.

Hence the group Y is generated by the finite set L ∩ Y and {xi}, and Y is finitely
generated as a Z-module.

Since the torsion of Y is trivial, the main theorem on the structure of finitely
generated modules over principal ideal domains implies the assertion of the proposition.

3.7.3. Dirichlet’s Unit Theorem. Let F be a number field of degree n, r1 + 2r2 = n.
Let OF be its ring of integers and U be the group of units of OF . Then U is the
direct product of a finite cyclic group T consisting of all roots of unity in F and a free
abelian group U1 of rank r1 + r2 − 1 :

U ' T × U1 ' T × Zr1+r2−1.

A basis of the free abelian group U1 is called a fundamental system of units in OF .
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Proof. Consider the canonical embedding σ of F into Rr1 × Cr2 . Define

f : OF \ {0} → Rr1+r2 ,

f (x) =
(
log |σ1(x)|, . . . , log |σr1 (x)|, log(|σr1+1(x)|2), . . . , log(|σr1+r2 (x)|2)

)
.

The map f induces a homomorphism g: U → Rr1+r2 .
We now show that g(U ) is a discrete group. Let u ∈ g−1(Z) and Z be a bounded

set. Then there is c such that |σi(u)| 6 c for all i. The coefficients of the characteristic
polynomial gu(X) =

∏n
i=1(X − σi(u)) of u over F being functions of σi(u) are

integers bounded by max(cn, ncn−1, . . . ), so the number of different characteristic
polynomials of g−1(Z) is finite, and so is g−1(Z).

Every finite subgroup of the multiplicative group of a field is cyclic by 1.2.4. Hence
the kernel of g, being the preimage of 0, is a cyclic finite group. On the other hand,
every root of unity belongs to the kernel of g, since mg(z) = g(zm) = g(1) = 0 implies
g(z) = 0 for the vector g(z). We conclude that the kernel of g consists of all roots of
unity T in F .

Since for u ∈ U the norm NF/Q(u) =
∏

σi(u), as the product of units, is a unit
in Z, it is equal to ±1. Then

∏
|σi(u)| = 1 and log |σ1(u)| + · · · + log |σr1 (u)| +

log(|σr1+1(u)|2) + · · · + log(|σr1+r2 (u)|2) = 0. We deduce that the image g(U ) is
contained in the hyperplane H ⊂ Rr1+r2 defined by the equation y1 + · · · + yr1+r2 = 0.
Since g−1(Z) is finite for every bounded set Z , the intersection g(U ) ∩ Z is finite.
Hence by 3.7.2 g(U ) has a Z-basis {yi} consisting of m 6 r1 + r2 − 1 linearly
independent vectors over Z. Denote by U1 the subgroup of U generated by zi such
that g(zi) = yi; it is a free abelian group, since there are no nontrivial relations among
yi . From the main theorem on group homomorphisms we deduce that U/T ' g(U )
and hence U = TU1 . Since U1 has no nontrivial torsion, T ∩U1 = {1}. Then U as a
Z-module is the direct product of the free abelian group U1 of rank m and the cyclic
group T of roots of unity.

It remains to show that m = r1 + r2 − 1, i.e. g(U ) contains r1 + r2 − 1 linearly
independent vectors. Put l = r1 + r2 . As an application of Minkowski’s geometric
method one can show that

for every integer k between 1 and l there is c > 0 such that for every non-zero
a ∈ OF \ {0} with g(a) = (α1, . . . , αl) there is a non-zero b = hk(a) ∈ OF \ {0}
such that

|NF/Q(b)| 6 c and g(b) = (β1, . . . , βl) with βi < αi for i 6= k .

(for the proof see Marcus, Number Fields, p.144–145)
Fix k. Start with a1 = a and construct the sequence aj = hk(aj−1) ∈ OF for

j > 2. Since N (ajOF ) = |NF/Q(aj )| 6 c, in the same way as in the proof of 3.6.4
we deduce that there are only finitely many distinct ideals ajOF . So ajOF = aqOF

for some j < q 6 l. Then uk = aqa
−1
j is a unit and satisfies the property: the i th
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coordinate of g(uk) = f (aq) − f (aj ) = (α(k)
1 , . . . , α(k)

l ) is negative for i 6= k. Then
α(k)

k is positive, since
∑

i α(k)
i = 0.

This way we get l units u1, . . . , ul . We claim that there are l − 1 linearly
independent vectors among the images g(ui). To verify the claim it suffices to check
that the first l − 1 columns of the matrix (α(k)

i ) are linearly independent.
If there were not, then there would be a non-zero vector (t1, . . . , tl−1) such that∑l−1

i=1 tiα
(k)
i = 0 for all 1 6 k 6 l. Without loss of generality one can assume that

there is i0 between 1 and l− 1 such that ti0 = 1 and ti 6 1 for i 6= i0 , 1 6 i 6 l− 1.
Then ti0α

(i0)
i0

= α
(i0)
i0

and for i 6= i0 tiα
(i0)
i > α

(i0)
i since ti 6 1 and α

(i0)
i < 0. Now

we would get

0 =
l−1∑

i=1
tiα

(i0)
i >

l−1∑

k=1
α

(i0)
i >

l∑

i=1
α

(i0)
i = 0,

a contradiction.
Thus, m = r1 + r2 − 1.

3.7.4. Example. Let F = Q(
√

d) with a square free non-zero integer d.
If d > 0, then the group of roots of 1 in F is {±1}, since F ⊂ R and there are

only two roots of unity in R.
Let OF be the ring of integers of F . We have n = 2 and r1 = 2, r2 = 0 if d > 0;

r1 = 0, r2 = 1 if d < 0. If d < 0, then

U (OF ) = T

is a finite cyclic group consisting of all roots of unity in F . It has order 4 for d = −1, 6
for d = −3, and one can show it has order 2 for all other negative square free integers.

If d > 0, U (OF ) is the direct product of 〈±1〉 and the infinite group generated by
a unit u (fundamental unit of OF ):

U (OF ) ' 〈±1〉 × 〈u〉 = {±uk : k ∈ Z}.

Here is an algorithm how to find a fundamental unit if d 6≡ 1 mod 4 (there is a
similar algorithm for an arbitrary square free positive d ):

Let b be the minimal positive integer such that either db2− 1 or db2 + 1 is a square
of a positive integer, say, a. Then NF/Q(a + b

√
d) = a2 − db2 = ±1, so a + b

√
d > 1

is a unit of OF .
Let u0 = e + f

√
d be a fundamental unit. Changing the sign of e, f if necessary,

we can assume that e, f are positive. Due to the definition of u0 there is an integer k

such that a + b
√

d = ±uk
0 . The sign is +, since the left hand side is positive; k > 0,

since u0 > 1 and the left hand side is > 1. From a + b
√

d = (e + f
√

d)k we deduce
that if k > 1 then b = f+ some positive integer > f , a contradiction. Thus, k = 1
and a + b

√
d > 1 is a fundamental unit of OF .
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For example, 1 +
√

2 is a fundamental unit of Q(
√

2) and 2 +
√

3 is a fundamental
unit of Q(

√
3).

3.7.5. Now suppose that d > 0, and for simplicity, d 6≡ 1 mod 4. We already know
that if an element u = a + b

√
d of OF is a unit, then its norm NF/Q(u) = a2 − db2 is

±1. On the other hand, if a2 − db2 = ±1, then ±u−1 = a− b
√

d is in OF , so u is a
unit. Thus, u = a + b

√
d is a unit iff a2 − db2 = ±1.

Let u0 = e + f
√

d be a fundamental unit.
From the previous we deduce that all integer solutions (a, b) of the equation

X2 − dY 2 = ±1

satisfy a + b
√

d = ±(e + f
√

d)m for some integer m, which gives formulas for a and
b as functions of e, f,m.
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4. p-adic numbers

4.1.1. p-adic valuation and p-adic norm. Fix a prime p.
For a non-zero integer m let

k = vp(m)

be the maximal integer such that pk divides m, i.e. k is the power of p in the
factorization of m. Then vp(m1m2) = vp(m1) + vp(m2).

Extend vp to rational numbers putting vp(0) :=∞ and

vp(m/n) = vp(m)− vp(n),

this does not depend on the choice of a fractional representation: if m/n = m′/n′

then mn′ = m′n, hence vp(m) + vp(n′) = vp(m′) + vp(n) and vp(m) − vp(n) =
vp(m′)− vp(n′).

Thus we get the p-adic valuation vp: Q → Z ∪ {+∞}. For non-zero rational
numbers a = m/n, b = m′/n′ we get

vp(ab) = vp(mm′/(nn′)) = vp(mm′)− vp(nn′)
= vp(m) + vp(m′)− vp(n)− vp(n′)
= vp(m)− vp(n) + vp(m′)− vp(n′)
= vp(m/n) + vp(m′/n′)
= vp(a) + vp(b).

Thus vp is a homomorphism from Q× to Z.

4.1.2. p-adic norm. Define the p-adic norm of a rational number α by

|α|p = p−vp(α), |0|p = 0.

Then
|αβ|p = |α|p|β|p.

If α = m/n with integer m,n relatively prime to p, then vp(m) = vp(n) = 0 and
|α|p = 1. In particular, | − 1|p = |1|p = 1 and so | − α|p = |α|p for every rational α.

4.1.3. Ultrametric inequality. For two integers m,n let k = min(vp(m), vp(n)), so
both m and n are divisible by pk . Hence m + n is divisible by pk , thus

vp(m + n) > min(vp(m), vp(m)).
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For two nonzero rational numbers α = m/n, β = m′/n′

vp(α + β) = vp(mn′ + m′n)− vp(nn′)
> min(vp(m) + vp(n′), vp(m′) + vp(n))− vp(n)− vp(n′)
> min(vp(m)− vp(n), vp(m′)− vp(n′))
= min(vp(α), vp(β)).

Hence for all rational α, β we get

vp(α + β) > min(vp(α), vp(β)).

This implies
|α + β|p 6 max(|α|p, |β|p).

This inequality is called an ultrametric inequality.
In particular, since max(|α|p, |β|p) 6 |α|p + |β|p , we obtain

|α + β|p 6 |α|p + |β|p,
so | |p is a metric ( p-adic metric) on the set of rational numbers Q and

dp(α, β) = |α − β|p
gives the p-adic distance between rational α, β .

4.1.4. All norms on Q . In general, for a field F a norm | |: F → R>0 is a map
which sends 0 to 0, which is a homomorphism from F× to R×

>0 and which satisfies
the triangle inequality: |α + β| 6 |α| + |β|. In particular,

|1| = 1, 1 = |1| = |(−1)(−1)| = | − 1|2,
so | − 1| = 1, and hence

| − a| = | − 1||a| = |a|.
A norm is called nontivial if there is a nonzero a ∈ F such that |a| 6= 1.
In addition to p-adic norms on Q we get the usual absolute value on Q which we

will denote by | |∞ .
A complete description of norms on Q is supplied by the following result.

Theorem (Ostrowski). A nontrivial norm | | on Q is either a power of the absolute
value | |c∞ with positive real c, or is a power of the p-adic norm | |cp for some prime
p with positive real c.

Proof. For an integer a > 1 and an integer b > 0 write

b = bnan + bn−1a
n−1 + · · · + b0

with 0 6 bi < a, an 6 b. Then
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|b| 6 (|bn| + |bn−1| + · · · + |b0|) max(1, |a|n)
and

|b| 6 (loga b + 1) d max(1, |a|loga b),
with d = max(|0|, |1|, . . . , |a − 1|).

Substituting bs instead of b in the last inequality, we get

|bs| 6 (s loga b + 1) d max(1, |a|s loga b),

hence
|b| 6 (s loga b + 1)1/sd1/s max(1, |a|loga b).

When s→ +∞ we deduce

|b| 6 max(1, |a|loga b).

There are two cases to consider.
(1) Suppose there is an integer b such that |b| > 1. We can assume b is positive.

Then
1 < |b| 6 max(1, |a|loga b),

and so |a| > 1, |b| 6 |a|loga b for every integer a > 1. Swapping a and b we get
|a| 6 |b|logb a , thus,

|a| = |b|logb a

for every integer a and hence for every rational a.
Choose c > 0 such that |b| = |b|c∞ then we obtain |a| = |a|c∞ for every rational a.
(2) Suppose that |a| 6 1 for all integer a. Since | | is nontrivial, let a0 be the

minimal positive integer such that |a0| < 1. If a0 = a1a2 with positive integers
a1 , a2 , then |a1| |a2| < 1 and either a1 = 1 or a2 = 1. This means that a0 = p
is a prime. If q /∈ pZ, then pp1 + qq1 = 1 with some integers p1 , q1 and hence
1 = |1| 6 |p| |p1|+ |q| |q1| 6 |p|+ |q|. Writing qs instead of q we get |q|s > 1−|p| > 0
and |q| > (1− |p|)1/s . The right hand side tends to 1 when s tends to infinity. So we
obtain |q| = 1 for every q prime to p. Therefore, |α| = |p|vp(α) , and | | is a power of
the p-adic norm.

4.1.5. Lemma (reciprocity law for all | |p ). For every nonzero rational α
∏

i prime or ∞
|α|i = 1.

Proof. Due to the multiplicative property of the norms and factorization of integers it
is sufficient to consider the case of α = p a prime number, then |p|p = p−1 , |p|∞ = p
and |p|i = 1 for all other i.
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4.2. The field of p-adic numbers Qp

4.2.1. The definition. Similarly to the definition of real numbers as the completion
of Q with respect to the absolute value | |∞ define Qp as the completion of Q

with respect to the p-adic norm | |p . So Qp consists of equivalences classes of all
fundamental sequences (with respect to the p-adic norm) (an) of rational numbers an :
two fundamental sequences (an), (bn) are equivalent if and only if |an − bn|p tends
to 0.

The field Qp is called the field of p-adic numbers and its elements are called p-adic
numbers.

4.2.2. p-adic series presentation of p-adic numbers. As an analogue of the decimal
presentation of real numbers every element α of Qp has a series representation: it can
be written as an infinite convergent (with respect to the p-adic norm) series

∞∑

i=n

aip
i

with coefficients ai ∈ {0, 1, . . . , p− 1} and an 6= 0.

4.2.3. The p-adic norm and p-adic distance. We have an extension of the p-adic
norm from Q to Qp by continuity: if α ∈ Qp is the limit of a fundamental sequence
(an) of rational numbers, then |α|p := lim |an|p . Since two fundamental sequences
(an), (bn) are equivalent if and only if |an − bn|p tends to 0, the p-adic norm of α is
well defined.

If we use the series representation α =
∑∞

i=n aip
i with coefficients ai ∈ {0, 1, . . . , p−

1} and an 6= 0, then |α|p = p−n .
The p-adic norm on Qp satisfies the ultrametric inequality: let α = lim an, β =

lim bn , (an), (bn) are fundamental sequences of rational numbers, then α + β =
lim(an + bn). Suppose that |α|p 6 |β|p , then |an|p 6 |bn|p for all sufficiently large
n, and so

|α + β|p = lim |an + bn|p 6 lim max(|an|p, |bn|p) = lim |bn|p = |β|p = max(|α|p, |β|p).

For α, β such that |α|p < |β|p we obtain β = γ + α where γ = β − α. By the
ultrametric inequality |β|p 6 max(|γ|p, |α|p), so |β|p 6 |γ|p and by the ultrametric
inequality |γ|p 6 max(|α|p, | − β|p) = max(|α|p, |β|p) = |β|p . Thus if |α|p < |β|p
then |α− β|p = |β|p .

Using the p-adic distance dp we have shown that for every triangle with vertices in
0, α, β if the p-adic length of its side connecting 0 and α is smaller than the p-adic
length of its side connecting 0 and β then the p-adic length of the third side connecting
α and β equals to the former. Thus, in every triangle two sides are of the same p-adic
length!
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4.2.4. The ring of p-adic integers Zp . Define the set Zp of p-adic integers as
those p-adic numbers whose p-adic norm does not exceed 1, i.e. whose p-adic series
representation has n0 > 0. For two elements α, β ∈ Zp we get |αβ|p > 0, |α±β|p >

0. Hence Zp is a subring of Qp .
The units Z×

p of the ring Zp are those p-adic numbers u whose p-adic norm is 1.
Every nonzero p-adic number α can be uniquely written as pvp(α)u with u ∈ Z×

p .
Thus

Q×
p ' 〈p〉 × Z×

p

where 〈p〉 is the infinite cyclic group generated by p.
Let I be a non-zero ideal of Zp . Let n = min{vp(α) : α ∈ I}. Then pnu

belongs to I for some unit u, and hence pn belongs to I , so pnZp ⊂ I ⊂ pnZp , i.e.
I = pnZp . Thus Zp is a principal ideal domain.

4.2.5. Note that Zp is the closed ball of radius 1 in the p-adic norm.
Let α be its internal point, so |α|p < 1. Then for every β on the boundary of the

open ball, i.e. |β|p = 1 we obtain, applying the previous calculation |α−β|p = |β|p = 1.
Thus, the p-adic distance from α to every point on the boundary of the ball is 1, i.e.
every internal point of a p-adic ball is its centre!

5. On class field theory

To describe some very basic things about it, we first need to go through a very useful
notion of the projective limit of algebraic objects.

5.1.1. Projective limits of groups/rings. Let An , n > 1 be a set of groups/rings,
with group operation, in the case of groups, written additively. Suppose there are
group/ring homomorphisms ϕnm: An → Am for all n > m such that

ϕnn = idAn
,

ϕnr = ϕmr ◦ ϕnm for all n > m > r.
The projective limit lim←−An of (An, ϕnm) is the set

{(an) : an ∈ An, ϕnm(an) = am for all n > m }
with the group/ring operation(s) (an) + (bn) = (an + bn) and (an)(bn) = (anbn)

For every m one has a group/ring homomorphism ϕn: lim←−An → Am, (an) 7→ am .

5.1.2. Examples.
1. If An = A for all n and ϕnm = id then lim←−An = A.
2. If An = Z/pnZ and ϕnm(a + pnZ) = a + pmZ then (an) ∈ lim←−Z/pnZ means

pmin(n,m)|(an − am) for all n,m.
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The sequence (an) as above is a fundamental sequence with respect to the p-adic
norm, and thus determines a p-adic number a = lim an ∈ Zp . For its description,
denote by rm the integer between 0 and pm − 1 such that rm ≡ am mod pm . Then
rm ≡ an mod pm for n > m and rn ≡ rm mod pm for n > m. Denote c0 = r0
and cm = (rm/− rm−1)p−m+1 , so cm ∈ {0, 1, . . . , p−1}. Then a =

∑
m>0 cmpm =

lim rm ∈ Zp.
We have a group and ring homomorphism

f : lim←−Z/pnZ→ Zp, (an)→ a = lim an ∈ Zp.

It is surjective: if a =
∑

m>0 cmpm then define rm by the inverse procedure to the
above, then a is the image of (rn) ∈ lim←−Z/pn; and its kernel is trivial, since a = 0
implies that for every k pk divides an for all sufficiently large n, and so pk divides
ak .

Thus,

lim←−Z/pnZ ' Zp.

This can be used as another (algebraic) definition of the ring of p-adic integers.
In particular, we a surjective homomorphism Zp → Z/pnZ whose kernel equals to

pnZp .
From the above we immediately deduce that if An = (Z/pnZ)× and ϕnm(a+pnZ) =

a + pmZ, (a, p) = 1, then similarly we have a homomorphism

f : lim←− (Z/pnZ)× → Z×
p , (an)→ lim rm ∈ Z×

p

(note that (rm, p) = 1 and hence lim rm 6∈ pZp ). Thus, there is an isomorphism

lim←− (Z/pnZ)× →̃Z×
p .

3. One can extend the definition of the projective limit to the case when the maps
ϕnm are defined for some specific pairs (n,m) and not necessarily all n > m.

Let An = Z/nZ and let ϕnm: An → Am be defined only if m|n and then
ϕnm(a + nZ) = a + mZ. Define, similarly to the above definition of the projective limit
the projective limit lim←−An .

By the Chinese remainder theorem

Z/nZ = Z/p
k1
1 Z× · · · × Z/pkr

r Z

where n = p
k1
1 . . . pkr

r is the factorization of n. The maps ϕnm induce the maps
already defined in 2 on Z/prZ, and we deduce

lim←−Z/nZ = lim←−Z/2rZ× lim←−Z/3rZ× · · · ' Z2 × Z3 × · · · =
∏

Zp.
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The group lim←−Z/nZ is denoted Ẑ and is called the procyclic group (topologically
it is generated by its unity 1). This group is uncountable. We have a surjective
homomorphism Ẑ→ Z/nZ whose kernel is nẐ.

Similarly we have

Ẑ× = lim←− (Z/nZ)× = lim←− (Z/2rZ)× × lim←− (Z/3rZ)× × · · · '
∏

Z×
p .

5.2.1. Infinite Galois theory. As described in 1.3

Gal(Fqm/Fq) ' Z/mZ,

where q = pn and the isomorphism is given by φn 7→ 1 + mZ. The algebraic
closure F a

q of Fq is the compositum of all Fqm . From the point of view of infinite
Galois theory and it is natural to define the infinite Galois group Gal(F a

q /Fq) as the
projective limit lim←− Gal(Fqm/Fq) with respect to the natural surjective homomorphisms
Gal(Fqm/Fq) → Gal(Fqr/Fq), r|m. This corresponds to ϕmr defined in Example 4
above.

Hence we get

Gal(F a
q /Fq) ' lim←−Z/nZ = Ẑ.

Similarly, using 2.4.3 for the maximal cyclotomic extension Qcycl , the composite
of all finite cyclotomic extensions Q(ζm) of Q, we have

Gal(Qcycl/Q) ' lim←− (Z/nZ)× ' Ẑ×.

The main theorem of extended (to infinite extensions) Galois theory (one has to
add a new notion of closed subgroup for an appropriate extension of the finite Galois
theory), can be stated as follows:

Let L/F be a (possibly infinite) Galois extension, i.e. L is the compositum of split-
ting fields of separable polynomials over F . Denote G = Gal(L/F ) = lim←− Gal(E/F )
where E/F runs through all finite Galois subextensions in L/F . Call a subgroup H
of G closed if H = lim←− Gal(E/K) where K runs through a subfamily of finite subex-

tensions in E/F , and the projective maps Gal(E ′′/K ′′) → Gal(E′/K ′) are induced
by Gal(E′′/F )→ Gal(E′/F ).

There is a one-to-one correspondence (H 7→ LH ) between closed subgroups H of
G and fields M , F ⊂M ⊂ L, the inverse map is given by M 7→ H = lim←− Gal(E/K)
where K = E ∩M . We have Gal(L/M ) = H .

Normal closed subgroups H of G correspond to Galois extensions M/F and
Gal(M/F ) ' G/H .
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5.3.1. We have already seen the importance of cyclotomic fields in Kummer’s theorem
3.6.8.

Another very important property of cyclotomic fields is given by the following
theorem

Theorem (Kronecker–Weber). Every finite abelian extension of Q is contained in
some cyclotomic field Q(ζn). Therefore the maximal abelian extension Q ab of Q

coincides with the cyclotomic field Qcycl which is the compositum of all cyclotomic
fields Q(ζn).

According to 2.4.3 the Galois group Gal(Q(ζn)/Q) is isomorphic to (Z/nZ)× . So
the infinite group Gal(Q ab/Q) is isomorphic to the limit of (Z/nZ)× which by 5.1.2
coincides with the group of units of Ẑ = lim←−Z/nZ.

The isomorphism
ϒ: Ẑ× →̃ Gal(Q ab/Q)

can be described as follows: if a ∈ Ẑ× is congruent to m modulo n via

Ẑ/nẐ→ Z/nZ,

then ϒ(a)(ζn) = ζm
n .

Using 5.1.2 we have an isomorphism

Ψ:
∏

Z×
p →̃ Ẑ× →̃ Gal(Qab/Q).

On the left hand side we have an object Ẑ× which is defined at the ground level of Q,
on the right hand side we have an object which incorporates information about all finite
abelian extensions of Q.

The restriction of the isomorphism to quadratic extensions of Q is related with the
Gauss quadratic reciprocity law, see below.

Abelian class field theory generalizes the Kronecker–Weber theorem for an algebraic
number field K to give a reciprocity homomorphism which relates an object (idele class
group) defined at level of K and the Galois group of the maximal abelian extension of
K over K .

5.3.2. Ideles. Recall (see 4.2.4) that Q×
p ' 〈p〉×Z×

p , a 7→ (n, u) where n = vp(a)
and u = ap−n ,
vp is the p-adic valuation.

Denote Q∞ = R and include ∞ in the set of “primes” of Z. Form the so called
restricted product

IQ =
∏′

Q×
p = {(a∞, a2, a3, . . . ) : ap ∈ Q×

p }

of R× = Q×
∞ , Q×

2 , Q×
3 , . . . such that almost all components ap are p-adic units.

Elements of IQ are called ideles over Q.
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Define a homomorphism

f : IQ =
∏′

Q×
p → Q× × R×

+ ×
∏

Z×
p ,

(a∞, a2, a3, . . . ) 7→ (a, a∞a−1, a2a
−1, a3a

−1, . . . )

where a = sgn(a∞)
∏

pvp(ap) ∈ Q× and sgn(a) is the sign of a.
It is easy to verify that f is an isomorphism.

5.3.3. Define a homomorphism

ΦQ:
∏′

Q×
p → Gal(Qab/Q)

by the following local-global formula:

ΦQ(a∞, a2, a3, . . . ) =
∏

ΦQp
(ap).

Here the local reciprocity map ΦQp
is described as follows: if ap = pnu where

n = vp(a), then for a qm th primitive root ζ of unity with prime q

ΦQp
(ap)(ζ) =

{
ζpn

, if p 6= q

ζu−1
, if p = q.

In particular, if p 6= q, then ΦQp
(p) sends ζ to ζp , similar to the p th Frobenius

automorphism defined in 1.3. So one can say that the reciprocity map sends prime p to
the p th Frobenius automorphism.

For p =∞ put
ΦQ∞

(a∞)(ζ) = ζsgn(a∞).

The homomorphism ΦQ is called the reciprocity map.

Theorem (class field theory over Q ).
1. Reciprocity Law: for a non-zero rational number a one has

ΦQ(a, a, a, . . . ) = 1.

2. For units up ∈ Z×
p one has

ΦQ(1, u2, u3, . . . ) = Ψ(u2, u3, . . . )−1.

3. Using f define

g: IQ → Q× × R×
+ ×

∏
Z×

p →
∏

Z×
p ,

(a, b, u2, u3, . . . ) 7→ (u2, u3, . . . ). Then

ΦQ(α)−1 = Ψ ◦ g(α).

4. The kernel of the reciprocity map ΦQ equals to g−1(1, 1, 1, . . . ) = the product
of the diagonal image of Q× in IQ and of the image of R×

+ in IQ with respect to the
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homomorphism α 7→ (α, 1, 1, . . . ). It induces an isomorphism

IQ/Q×R×
+ ' Gal(Qab/Q).

Proof. To verify the first property, due to the multiplicativity of ΦQ it is sufficient to
show that for a primitive qm th root ζ of unity

ΦQ(p, p, . . . )(ζ) = ζ for all positive prime numbers p

ΦQ(−1,−1, . . . )(ζ) = ζ.

From the definition of ΦQ we deduce that

ΦQl
(p)(ζ) =





ζ, if l 6= q, l 6= p

ζp, if l 6= q, l = p

ζp−1
, if l = q, l 6= p

ζ, if l = q = p.

So (
∏

l ΦQl
(p))(ζ) = ζ for q 6= p and for q = p. Similarly one checks the second

assertion.
The second property is easy: due to multiplicativity it suffices to show that

Ψ(1, . . . , up, 1, . . . )−1 = ΦQ(1, . . . , up, 1, . . . )

and this follows immediately from the definition of Ψ, ΦQ .
The third property follows from the definition of f and the first and second proper-

ties. The fourth property follows from the third.

From this theorem one can deduce Gauss quadratic reciprocity law.

5.3.4. For an algebraic number field F one can define, in a similar way, the idele
group IF as a restricted product of the multiplicative groups F×

P of completions FP

of F with respect to non-zero prime ideals P of the ring of integers of F , and of real
or complex completions of F with respect to real and complex imbeddings of F into
C.

Except the case of Q and imaginary quadratic fields one does not have an explicit
description of the maximal abelian extension as in Kronecker–Weber theorem 4.2.3. So
one needs to directly define a reciprocity map

ΦF : IF → Gal(F ab/F )

and study its properties. This global reciprocity map is defined as the product of
composites of local reciprocity maps F×

P → Gal(FP
ab/FP ) and homomorphisms

Gal(FP
ab/FP )→ Gal(F ab/F ).

The analog of the reciprocity law is that the kernel of ΦF contains the image of
F× in IF .
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Part of class field theory associates to every open subgroups N in IF /F× its class
field L – the unique finite abelian extension of F such that NL/F (IL)F× = N .

It also contains information on arithmetical properties of the behavior of prime
numbers in finite abelian extensions as a generalization of Theorem 3.5.9 and Gauss
quadratic reciprocity law.


