
Algebraic Structures 3 1998

2. Categories and functors

2.1. Definitions

2.1.1. Definition. A category Q consists of objects Ob(Q) and morphisms between objects:

for every Q,R ∈ Q there is a set Mor(R,S) which is called the set of morphisms from R to S; for

every three objects Q,R, S in Q there is a composition of morphisms, i.e. a map

Mor(R,S) × Mor(Q,R) → Mor(Q,S), (f, g) → f ◦ g.

The following axioms should be satisfied:

(1) The intersection of Mor(Q,R) and Mor(Q′, R′) is empty unless Q = Q′ and R = R′.

(2) For every Q of Ob(Q) there is a morphism idQ ∈ Mor(Q,Q) such that for every R in

Ob(Q) and every h ∈ Mor(R,Q), g ∈ Mor(Q,R)

idQ ◦h = h, g ◦ idQ = g.

(unit axiom)

(3) For every Q,R, S, T in Ob(Q) and every f ∈ Mor(Q,R), g ∈ Mor(R,S), h ∈ Mor(S, T )

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(associativity of the composition of morphisms).

2.1.2. An element f ∈ Mor(Q,R) can be written as f :Q→ R.

2.2. Examples

2.2.1. The category Set has sets as objects, maps of sets as morphisms.

2.2.2. The category Gr has groups as objects, homomorphisms of groups as morphisms.

2.2.3. The category Rg consists of rings as objects, homomorphisms of rings as morphisms.

2.2.4. The category A − mod consists of left modules over a (not necessarily commutative)

ring A as objects, homomorphisms of rings as morphisms. Note that Z −mod coincides with the

category Ab of abelian groups as objects, homomorphisms of groups as morphisms.

2.2.5. The category F ld consists of fields as objects, homomorphisms of rings as morphisms.
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2.3. Definitions

2.3.1. Definition. A morphism f :Q → R is called an isomorphism if there is a morphism

g:R → Q such that f ◦ g = idR and g ◦ f = idQ. It is easy to show that if g exists, then g is

unique. The objects Q and R are called isomorphic objects.

Isomorphisms in Set are bijections.

An isomorphism from Q to Q is called an automorphism of Q, the set of all automorphisms is

denoted by Aut(Q). It is a group.

2.3.2. Morphisms from Q to Q are called endomorphisms. The set of all endomorphism of Q

is denoted by End(Q).

2.3.3. A morphism f :Q→ R is called a monomorphism if for every two morphisms g1, g2:S →

Q

f ◦ g1 = f ◦ g2 ⇒ g1 = g2

(can cancel f on the left).

Monomorphisms of categories of 2.2.1-2.2.5 are injective maps. Every morphism of a category

of 2.2.1-2.2.5 which is injective is a monomorphism.

2.3.4. A morhism f :Q→ R is called an epimorphism if for every two morphisms g1, g2:R → S

g1 ◦ f = g2 ◦ f ⇒ g1 = g2

(can cancel f on the right).

Surjective morphisms of categories of 2.2.1-2.2.5 are epimorphisms.

Lemma. A morphism of Set, A−mod which is an epimorphism is surjective.

Proof. If f :Q→ R is not surjective for sets Q,R, then define gi:R → {0, 1} by g1(f(Q)) = 0,

g1(r) = 1 for r ∈ R \ f(Q) and g2(R) = 0. Then g1 ◦ f = g2 ◦ f and g1 6= g2.

If f :Q → R is not surjective for modules Q,R, then let g1:R → R/f(Q) be the canonical

surjective homomorphism and g2:R → R/f(Q) be the zero homomorphism. Then g1 ◦ f = g2 ◦ f

and g1 6= g2.

However, in other categories there are epimorphisms which are not surjective: for example,

the inclusion f : Z → Q is an epimorphism in Rg. Indeed, assume that g1: Q → A is a ring

homomorphism, and g2: Q → A is a ring homomorphism such that g1 ◦ f = g2 ◦ f . If the kernel of

g1 is Q, then its image is {0}. Then Z ⊂ ker(g2), so ker(g2) = Q and g1 = g2. If the kernel of g1
is (0), then its image is an integral domain and so is the image of g1 bu the preceding arguments.

From g1(n) = g2(n) for every integer n, we get mg1(n/m) = g1(n) = g2(n) = mg2(n/m), so

g1(n/m) = g2(n/m) and g1 = g2.

Note that f isn’t an isomorphism, though it is a monomorphism and epimorphism.

2.3.5. Definition. Let Q be a category. The opposite category Qop has the same objects as Q,

for Q,R in Ob(Qop) the set MorQop(Q,R) is equal by the definition to the set MorQ(R,Q); the

composition

MorQop(R,S) × MorQop(Q,R) → MorQop(Q,S)

is defined as (f, g) → g ◦ f ∈ MorQ(S,Q) = MorQop(Q,S).

Monomorphisms of Q are epimorphisms of Qop; epimorphisms of Q are monomorphisms of Qop.
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2.3.6. Definition. An initial object of Q (if it exists) is an object I such that for every Q in

Ob(Q) there is exactly one morphism from I to Q. A terminal object of Q (if it exists) is an object

T such that for every Q in Ob(Q) there is exactly one morphism from Q to T .

All initial objects are isomorphic, and all terminal objects are isomorphic.

For example, the initial object of Set is the empty set; the terminal object of Set is any one-

element set. The group consisting of one element is an initial and terminal object of Gr and Ab.

The A-module {0} is an initial and terminal object of A−mod.

2.3.7. Let Q in CalQ and let QQ be a category whose objects are morphisms f :R→ Q, R in

Ob(Q) and morhisms from f :R → Q to g:S → Q are morphisms h:R → S such that g ◦ h = f .

2.3.8. Let Q be a category. Define a new category M(Q) whose objects are morphisms of Q

and for two morphisms f :Q → R ∈ Ob(M(Q)) and f ′:Q′ → R′ ∈ Ob(M(Q)) morphism of f

to f ′ in M(Q) is the pair (φ:A→ A′, ψ:B → B′) of morphisms of Q such that ψ ◦ f = f ′ ◦ φ.

2.4. Products and coproducts

2.4.1. Definition. If Qk, k ∈ K is a set of objects in Q, then a product
∏

k∈K Qk (if it exists)

is an object of Q together with morphisms πk:
∏

k∈K Qk → Qk such that for every Q in Ob(Q)

and every set of morphisms fk:Q → Qk there is a unique morphism f :Q→
∏

k∈K Qk such that

πk ◦ f = fk for all k ∈ K.

2.4.2. If a product exists it is unique up to an isomorphism.

If K = {1, 2} we just write Q1 ×Q2 for the product of Q1 and Q2.

2.4.3. Product in category Set is the product of sets, in Ab is the product of groups, in Rg is

the product of rings, in A−mod is the product of modules, in F ld doesn’t exist.

2.4.4. Definition. If Qk, k ∈ K is a set of objects in Q, then a coproduct
∐

k∈K Qk (if it

exists) is an object of Q together with morphisms ik:Qk →
∐

k∈K Qk such that for every Q in

Ob(Q) and every set of morphisms fk:Qk → Q there is a unique morphism f :
∐

k∈K Qk → Q

such that

f ◦ ik = fk for all k ∈ K.

2.4.5. Coproduct in category Set is the disjoint union of sets, in Ab is the direct sum of groups,

in A−mod is the direct sum of modules, in Rg and F ld doesn’t exist.

2.4.6. Coproduct in Q corresponds to product in Qop and product in in Q corresponds to

coproduct in Qop.

2.5. Functors of categories

2.5.1. Definition. A (covariant) functor F from a category Q to a category R is a rule which

associates an object F(Q) of R to every object Q ∈ Q, and a morphism F(f):F(Q) → F(R) to

every morphism f :Q→ R such that the following properties hold:

(1) F(idQ) = idF(Q) for every Q in Ob(Q);

(2) F(f ◦ g) = F(f) ◦ F(g) for every f ∈ Mor(R,S), g ∈ Mor(Q,R).



4

2.5.2. Example 1. The identity functor idQ associates Q to Q in Ob(Q) and f to f ∈ Mor(Q).

Example 2. A forgetful functor, for example from A−mod to Ab (forget the A-module struc-

ture), or from Gr to Set (forget the group structure).

2.5.3. If F :Q → R and G:R → S are two functors, then G ◦ F : Q → S is defined as

(G ◦ F)(Q) = G(F(Q)) and (G ◦ F)(f) = G(F(f)).

Then idQ ◦F = F = F ◦ idQ.

2.5.4. A contravariant functor F :Q → R is a (covariant) functor F :Q → Rop, i.e. a rule which

associates an object F(Q) of R to every object Q in Ob(Q), and a morphism F(f):F(R) → F(Q)

to every morphism f :Q→ R such that the following properties hold:

(1) F(idQ) = idF(Q) for every Q in Ob(Q);

(2) F(f ◦ g) = F(g) ◦ F(f) for every f ∈ Mor(R,S), g ∈ Mor(Q,R).

2.5.5. Example 3. Let Q in Ob(Q). Define a functor Hom(Q, ·):Q → Set by

Hom(Q, ·)(R) = Mor(Q,R) and (Hom(Q, ·)(f))(g) = f ◦ g

for every g ∈ Mor(Q,R) for a morphism f :R → S, so Hom(Q, ·)(f):Mor(Q,R) → Mor(Q,S).

If Q = mod− A, then Hom(Q, ·):Q → Q, Hom(Q, ·)(R) = Hom(Q,R).

Define a contravariant functor Hom(·, Q):Q → Set by

Hom(·, Q)(R) = Mor(R,Q) and (Hom(·, Q)(f))(g) = g ◦ f

for every g ∈ Mor(R,Q) for a morphism f :S → R, so Hom(·, Q)(f):Mor(R,Q) → Mor(S,Q).

If Q = mod− A, then Hom(·, Q):Q → Q.

2.5.6. Definition. Suppose that for every two morphisms f, g:Q → R in Q there is their

sum f + g:Q → R and it is a morphism of Q. A functor F :Q → Q is called additive if

F(f + g) = F(f) + F(g) for every two morphisms f, g:Q→ R in Q.

Lemma. If F is an additive functor, then F(Q1 ×Q2) is a product of F(Q1) and F(Q2).

Proof. First, let Q1, Q2, Q be objects of Q. Suppose there are morphisms

i1:Q1 → Q, i2:Q2 → Q, p1:Q → Q1, p2:Q→ Q2

such that

p1 ◦ i1 = idQ1
, p2 ◦ i2 = idQ2

, p1 ◦ i2 = 0, p2 ◦ i1 = 0, i1 ◦ p1 + i2 ◦ p2 = idQ .

Let R be an object of Q and let fk:R → Qk be morphisms. Define f :R → Q as f =

i1 ◦ f1 + i2 ◦ f2. Then pk ◦ f = pk ◦ (i1 ◦ f1 + i2 ◦ f2) = fk. If g:R → Q satisfies pk ◦ g = fk,

then pk ◦ (f − g) = 0 and f − g = (i1 ◦ p1 + i2 ◦ p2) ◦ (f − g) = 0, i.e. f = g. Thus, Q together

with morphisms pk:Q→ Qk is a product of Q1 and Q2.

Conversely, if Q is a product of Q1 and Q2, then there morphisms ik, pk = πk satisfy the listed

relations.

Thus the property ofQ to be a product ofQ1 andQ2 can be reformulated in terms of morphisms.

Then their images with respect to F satisfy the same relations, and thus, F(Q1×Q2) is a product

of F(Q1) and F(Q2).
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2.6. Complexes, commutative diagrams and exact sequences

Let Q be A−mod. We write groups additively. Denote by 0 the zero A-module. It is an initial

and terminal object of Q.

Every morphism in Q has its kernel (as a homomorphism in this case) and image.

2.6.1. Definition. A sequence of objects and morphisms in Q

. . . −→ Qn+1
fn+1
−→ Qn

fn
−→ Qn−1 −→ . . .

is called exact if the kernel of fn is equal to the image of fn+1 for every n ∈ Z.

Example. A short sequence is

0 −→ Q
f

−→ R
g

−→ S −→ 0

and its exactness means that f is a injective, g is surjective and the kernel of g coincides with the

image of f , so if we identify Q with its image in R, then S is isomorphic to R/Q.

2.6.2. Definition. A diagram of objects and morphisms is called commutative if the result of

compositions of morphisms doesn’t depend on the route chosen. For instance, the diagram

. . . −−−−→ Qn.m

fn,m

−−−−→ Qn,m−1 −−−−→ . . .

gn,m



y gn,m−1



y

. . . −−−−→ Qn−1,m

fn−1,m

−−−−→ Qn−1,m−1 −−−−→ . . .

of objects Qn,m of Q and morphisms fn,m:Qn,m → Qn,m−1, gn,m:Qn,m → Qn−1,m is commu-

tative if fn−1,m ◦ gn,m = gn,m−1 ◦ fn,m for every n,m ∈ Z.

Note that a functor sends a commutative diagram into a commutative diagram, since F(f ◦

· · · ◦ g) = F(f) ◦ · · · ◦ F(g).

2.6.3. Definition. A chain complex C is a sequence Cn of objects of Q, n ∈ Z such that there

are morphisms dn:Cn → Cn−1 such that dn ◦ dn+1 is the zero morphism Cn+1 → Cn−1. Note

that every exact sequence is a chain complex.

We write

. . . −→ Cn+1
dn+1
−→ Cn

dn−→ Cn−1 −→ . . .

The morphisms dn are called differentials of C. The kernel of dn which is an object of Q consists

of so called n-cycles and is denoted by Zn(C). The image of dn+1 which is an object of Q consists

of n-boundaries and is denoted by Bn(C). Since dn ◦dn+1 = 0 we get 0 ⊂ Bn(C) ⊂ Zn(C) ⊂ Cn

for all n. The quotient Zn(C)/Bn(C) is called the nth homology of C and is denoted by Hn(C).

A complex C is called exact if sequence

. . . −→ Cn+1
dn+1
−→ Cn

dn−→ Cn−1 −→ . . .

is exact, i.e. Hn(C) = 0 for all n ∈ Z.

2.6.4. Definition. A cochain complex C is a sequence Cn of objects of Q, n ∈ Z such that

there are morphisms dn:Cn → Cn+1 such that dn ◦ dn−1 is the zero morphism Cn−1 → Cn+1.

We write

. . . −→ Cn−1 dn−1

−→ Cn dn

−→ Cn+1 −→ . . .
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The morphisms dn are called differentials of C. The kernel of dn which is an object of Q consists

of n-cocycles and is denoted by Zn(C). The image of dn−1 which is an object of Q consists of n-

coboundaries and is denoted by Bn(C). Since dn ◦ dn−1 = 0 we get 0 ⊂ Bn(C) ⊂ Zn(C) ⊂ Cn

for all n. The quotient Zn(C)/Bn(C) is called the nth cohomology of C and is denoted by

Hn(C).

2.6.5. Definition. For two chain complexes

. . . −→ Cn+1
dn+1
−→ Cn

dn−→ Cn−1 −→ . . .

and

. . . −→ C ′
n+1

d′

n+1
−→ C ′

n

d′

n−→ C ′
n−1 −→ . . .

a morphism u:C → C
′ is a sequence of of morphisms un:Cn → C ′

n such that

un−1 ◦ dn = dn−1 ◦ un

for every n. In other words, the diagram

. . . −−−−→ Cn+1
dn+1

−−−−→ Cn
dn−−−−→ Cn−1 −−−−→ . . .

un+1



y un



y un−1



y

. . . −−−−→ C ′
n+1

d′

n+1
−−−−→ C ′

n

d′

n−−−−→ C ′
n−1 −−−−→ . . .

is commutative.

Definition. A category Ch(Q) of chain complexes over Q has chain complexes as objects and

morphisms of chain complexes as morphisms.

The morphism u:C → C
′ induces morphisms Hn(C) → Hn(C′) for all n.

2.6.6. Definition. A sequence of chain complexes C
(n) and morphisms u(n):C(n) → C

(n−1)

is called exact if for every m ∈ Z the sequence C
(n+1)
m

u(n+1)
m−→ C

(n)
m

u(n)
m−→ C

(n−1)
m for every n.

2.6.7. Note that a functor send a chain complex into a chain complex, since 0 = F(0) =

F(dn ◦ dn+1) = F(dn) ◦ F(dn+1).

2.7. Long sequence of homologies

Let Q be A−mod.

2.7.1. Let f :Q→ R be a morphism of Q. Then we have an exact sequence

0 −→ ker(f) −→ Q
f

−→ R −→ coker(f) −→ 0.

Here ker(f) is the kernel of f and coker(f) = R/f(Q) is the cokernel of f .

2.7.2. Snake Lemma. For a commutative diagram

A −−−−→ B
p

−−−−→ C −−−−→ 0

f



y g



y h



y

0 −−−−→ A′ i
−−−−→ B′ −−−−→ C ′

with exact rows there is an exact sequence

ker(f) −→ ker(g) −→ ker(h)
δ

−→ coker(f) −→ coker(g) −→ coker(h)
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with δ defined by the formula δ(c) = i−1gp−1(c) mod coker(f) for c ∈ ker(h). Moreover, if

A → B is a monomorphism, then so is ker(f) → ker(g) and if B ′ → C ′ is an epimorphism, then

so is coker(g) → coker(h).

Proof. Diagram chase.

2.7.3. Theorem. Let

0 −→ A
f

−→ B
g

−→ C −→ 0

be a short exact sequence of chain complexes. Then there are morphisms

δn:Hn(C) → Hn−1(A) called connecting morphisms such that

. . .
gn+1
−→ Hn+1(C)

δn+1
−→ Hn(A)

fn
−→ Hn(B)

gn
−→ Hn(C)

δn−→ Hn−1(A) −→ . . .

is an exact sequence.

Similarly, if

0 −→ A
f

−→ B
g

−→ C −→ 0

is a short exact sequence of cochain complexes, then there are morphisms

δn:Hn(C) → Hn+1(A) called connecting morphisms such that

. . .
gn−1

−→ Hn−1(C)
δn−1

−→ Hn(A)
fn

−→ Hn(B)
gn

−→ Hn(C)
δn

−→ Hn+1(A) −→ . . .

is an exact sequence.

Proof. From the diagram

0 −−−−→ An −−−−→ Bn −−−−→ Cn −−−−→ 0

dA
n



y dB

n



y dC

n



y

0 −−−−→ An−1 −−−−→ Bn−1 −−−−→ Cn−1 −−−−→ 0

and the Snake Lemma we get exact sequences

0 −→ Zn(A) −→ Zn(B) −→ Zn(C)

and

An/d
A
n+1(An+1) −→ Bn/d

B
n+1(Bn+1) −→ Cn/d

C
n+1(Cn+1) −→ 0.

Define morphism d
A

n :An/d
A
n+1(An+1) → Zn−1(A) as induced by dA

n . Now we get the commuta-

tive diagram

An/d
A
n+1(An+1) −−→ Bn/d

B
n+1(Bn+1) −−→ Cn/d

C
n+1(Cn+1) −−→ 0

d
A

n



y d

B

n



y d

C

n



y

0 −−→ Zn−1(A) −−→ Zn−1(B) −−→ Zn−1(C)

The kernels of the vertical morphisms is Hn(A), Hn(B), Hn(C) and their cokernels are Hn−1(A),

Hn−1(B), Hn−1(C). By the Snake Lemma we deduce an exact sequence

Hn(A) −→ Hn(B) −→ Hn(C) −→ Hn−1(A) −→ Hn−1(B) −→ Hn−1(C).

Pasting together these sequences we get the long exact sequence.
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2.7.4. Remark. If

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0


y



y



y

0 −−−−→ ′A −−−−→ B
′ −−−−→ C

′ −−−−→ 0

is a commutative diagram with short exact sequences of chain complexes, then the diagram

. . . −−−−→ Hn(B) −−−−→ Hn(C) −−−−→ Hn+1(A) −−−−→ . . .


y



y



y

. . . −−−−→ Hn(B) −−−−→ Hn(C) −−−−→ Hn+1(A) −−−−→ . . .

is commutative.

The proof follows from the explicit description of the morphism δn:Hn(C) → Hn−1(A): δn
transforms an n-cycle x ∈ Cn to f−1

n−1d
B
n g

−1
n (x) mod dn−1An−1.
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3. Free, projective and injective modules

Let Q be A−mod.

3.1. Free objects

3.1.1. Let X be a set. Consider a category Map(X,Q) objects of which are maps f :X → Q,

Q ∈ Q, and a morphism from an object f :X → Q to an object g:X → R is a morphism ϕ:Q→ R

in Mor(Q,R) such that g = ϕ ◦ f .

3.1.2. Definition. An object F of Q together with a map f :X → F is called a X-free (free)

object of Q if f :X → F is an initial object of the category Map(X,Q). In other words, for every

object Q of Q and a map g:X → Q there is a unique morphism ψ:F → Q in Q such that

ψ ◦ f = g.

Or, equivalently, for every set {qx ∈ Q : x ∈ X} there is a unique morphism ψ:F → Q such that

ψ(f(x)) = qx for all x ∈ X.

Example. If X consists of one element x, then A, x→ 1 is a X-free object in A−mod.

3.1.3. Lemma For every set X there exists a X-free object of Q. Every two X-free objects are

isomorphic.

Proof. Let F =
∐

x∈X Ax = ⊕x∈XAx in Q where Ax = A. Let the map f :X → F be defined

by x → 1 of the xth component. It is a X-free object of Q: for an object Q of Q and a map

g:X → Q define ψ : F → Q by ψ(⊕ax) =
∑

x∈X axg(x). Then ψ ◦ f = g. If ψ′ ◦ f = g, then

ψ′ = ψ.

Since F is a X-free object, there is a unique morphism ψ0:F → F such that ψ0 ◦ f = f . We

deduce that ψ0 = idF .

If F ′, f ′:X → F ′ is another X-free object, then there is a unique morphism ψ:F → F ′ such

that f ′ = ψ ◦f and a unique morphism ψ′:F ′ → F such that f = ψ′ ◦f ′. Then f = ψ′ ◦ψ ◦f , so

by the previous paragraph ψ′ ◦ ψ = idF and similarly ψ ◦ ψ′ = idF ′ , so F and F ′ are isomorphic.

3.1.4. Lemma. The coproduct of free objects is free.

Proof. Let Fk be Xk-free (with fk:Xk → Fk), k ∈ K. Let ik:Fk →
∐

k∈K Fk be as in

the definition of a coproduct in 2.4.4. Define ρk:Xk
fk
−→ Fk

ik−→
∐

k∈K Fk. By the definition

of a coproduct there is a map f :
∐

k∈K Xk →
∐

k∈K Fk such that the composition of jk:Xk →
∐

k∈K Xk and f coincides with ρk for all k ∈ K.

For a map g:
∐

k∈K Xk → Q put gk = g ◦ jk, k ∈ K. Then there are morphisms ψk:Fk → Q

such that ψk ◦ fk = gk for all k ∈ K. From the definition of a coproduct we deduce there is a

morphism ψ:
∐

k∈K Fk → Q such that ψ ◦ ik = ψk. Then

ψ ◦ f ◦ jk = ψ ◦ ρk = ψ ◦ ik ◦ fk = ψ ◦ ik ◦ fk = ψk ◦ fk = gk = g ◦ jk

for every k ∈ K. Then from the definition of a coproduct in 2.4.4 we conclude that ψ ◦ f = g.

If ψ′ ◦ f = g, then

ψ′ ◦ f ◦ jk = ψ′ ◦ ρk = ψ′ ◦ ik ◦ fk = g ◦ jk = gk = ψk ◦ fk,

so ψ′ ◦ ik = ψk and then ψ′ = ψ.
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3.1.5. Lemma. Every object of Q is a quotient of a free object.

Proof. For an object Q put X = Q and let g:X → Q be the identity map. Then there is a

X-free object F with f :X → F such that there is a morphism ψ:F → Q satisfying ψ ◦ f = g.

Since g is surjective, ψ is an epimorphism and Q is a quotient of F .

3.2. Projective objects

3.2.1. Definition. An object P is called a summand of an object Q of Q if there are morphisms

π:Q→ P and i:P → Q such that π ◦ i = idP .

Then the kernel if i and the cokernel of π are zero.

3.2.2. Examples.

1) P is a summand of P , just take i and π as the identity morphisms.

2) Define i:P → P ⊕R, π:P ⊕R → P by iP (p) = (p, 0), πP (p, r) = p. Then P is a summand

of P ⊕R.

3) Let Pk be a summand of Qk, k = 1, 2. Then P1 ⊕ P2 is a summand of Q1 ⊕Q2, just take

π = (π1, π2) and i = (i1, i2).

3.2.3. Definition. A short exact sequence

0 −→ R
u

−→ Q
v

−→ S −→ 0

splits if there is a morphism w:S → Q such that v ◦ w = idS .

Then S is a summand of Q. Conversely, if S is a summand of Q, then the sequence

0 −→ R −→ Q
π

−→ S −→ 0,

where R = kerπ, splits: π ◦ i = idS .

Define a morphism ρ:R ⊕ S → Q by ρ((r, s)) = u(r) + w(s). If ρ((r, s)) = 0, then 0 =

v(ρ((r, s))) = s and then u(r) = 0, so r = 0. Hence ρ is a injective. Since v(q − wv(q)) =

v(q) − v(q) = 0, q − wv(q) = u(r) for some r ∈ R. Then q = ρ((r, v(q))). Therefore, ρ is an

isomorphism and Q is a direct sum of R and S.

Similarly one can show that Q is isomorphic to R ⊕ S iff there is a morphism z:Q → R such

that z ◦ u = idR.

Thus, S is a summand of Q iff there is a short exact split sequence

0 −→ R
u

−→ Q
v

−→ S −→ 0,

iff Q is a direct sum of S and R iff there is a morphism z:Q→ R such that z ◦ u = idR.

3.2.4. Definition. An object P is called projective if it is a summand of a free object.

Examples.

1) Every free object is a summand of itself, therefore every free object is projective.

2) Let A = Z/6Z. By the Chinese remainder theorem A is isomorphic to Z/2Z ⊕ Z/3Z, so

Z/2Z is a projective Z/6Z-module. However, it isn’t a free Z/6Z-module, since every finite free

Z/6Z-module has cardinality divisible by 6.
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3.2.5. Lemma. For objects P1, P2 the direct sum P1⊕P2 is projective iff P1, P2 are projective.

Proof. Let pPk
:P1 ⊕ P2 → Pk, iPk

:Pk → P1 ⊕ P2, k = 1, 2, be morphisms introduced in

example 2) above. If P1 ⊕ P2 is a summand of a free object F with morphisms i, π, then Pk is a

summand of F with morphisms πPk
◦ π and i ◦ iPk

.

If P1, P2 are summands of F1, F2, then by example 3) above P1 ⊕P2 is a summand of F1 ⊕F2

which is a free object by 3.1.4.

3.2.6. Proposition. An object P is projective iff for every two objects R,Q, a morphism

β:P → Q and an epimorphism α:R → Q

P

β



y

R
α

−−−−→ Q −−−−→ 0

there is a morphism γ:P → R such that β = α ◦ γ.

Proof. First let’s check that if P is a X-free object with f :X → P , then it satisfies the property

of the proposition. Denote g = β ◦ f and qx = g(x) for x ∈ X. Since α is surjective, qx = α(rx)

for some rx ∈ R. According to the definition of a X-free object, there is a morphism γ:P → R

such that γ(f(x)) = rx for all x ∈ X. Then α ◦ γ(f(x)) = β(f(x)). Morphisms α ◦ γ and β

satisfy α ◦ γ ◦ f = g = β ◦ f , so α ◦ γ = β.

Now let P be projective, so there is a free object F and morphisms π:F → P and i:P → F

such that π ◦ i = idP . Then we get a morphism β′ = β ◦ π:F → Q and from the first paragraph

there is a morphism γ′:F → R such that α ◦ γ′ = β′. Then for γ = γ′ ◦ i:P → R we get

α ◦ γ = β′ ◦ i = β ◦ π ◦ i = β, so P satisfied the property of the proposition.

Conversely, assume P satisfies the property of the proposition. Let F be a free object such that

P is its quotient, i.e. there is an epimorphism α:F → P . Then there is a morhism γ:P → F such

that α ◦ γ = idP . Thus, P is a summand of F .

3.2.7. Corollary 1. Let P be projective. Then for every three objects S,R,Q and a diagram

P

β



y

S
δ

−−−−→ R
α

−−−−→ Q

with exact row and α ◦ β = 0 there is a morphism ε:P → S such that

β = δ ◦ ε.

Proof. Since α ◦ β = 0, we deduce that im(β) ⊂ ker(α) = δ(S). Consider the epimorphism

δ′:S → δ(S). From the proposition we deduce that there is a morphism ε:P → S such that

β = δ′ ◦ ε. Then β = δ ◦ ε.

3.2.8. Corollary 2. P is projective iff every short exact sequence

0 −→ R −→ Q
v

−→ P −→ 0

splits.

Proof. If P is projective, then by the proposition there is a morphism γ:P → Q such that

v ◦ γ = idP , so the sequence splits.
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Let

0 −→ R −→ F
v

−→ P −→ 0

be an exact sequence where F is free. Then it splits, so P is a summand of F , and therefore P is

projective.

Example 3. ) Let A = Z/4Z. The sequence

0 −→ Z/2Z −→ Z/4Z −→ Z/2Z −→ 0

(the morphism Z/4Z → Z/2Z is defined as n mod 4 → n mod 2) doesn’t split, because other-

wise Z/4Z were isomorphic to Z/2Z ⊕ Z/2Z and wouldn’t have an element 1 mod 4 of order 4.

Thus, Z/2Z isn’t a projective object in the category Z/4Z −mod.

3.2.9. Definition. A functor F :Q → Q is called exact (left exact, right exact) if for every short

exact sequence

0 −→ R −→ Q −→ S −→ 0

the sequence

0 −→ F(R) −→ F(Q) −→ F(S) −→ 0

is exact (exact everywhere with exception of F(S), exact everywhere with exception of F(R)).

Lemma. The functor Hom(T, ·):Q → Q defined in 2.5.5 is left exact.

Proof. Let

0 → R
u

−→ Q
v

−→ S −→ 0

be an exact sequence. If f :T → R and u ◦ f :T → Q is the zero morphism, then f(T ) = 0 and

so f is the zero morphism.

For f :T → R clearly v◦u◦f :T → S is the zero morphism. If g:T → S is such that v◦g:T → S

is the zero morphism, then for every t ∈ T g(t) = u(rt) for a uniquely determined rt ∈ R. Define

f :T → R by f(t) = rt. It is a morphism and g = u ◦ f .

Similarly one can show that the contravariant functor Hom(·, T ):Q → Q is left exact, i.e. for

an exact sequence

0 −→ R −→ Q −→ S −→ 0

the sequence

0 −→ Hom(S, T ) −→ Hom(Q,T ) −→ Hom(R, T )

is exact.

3.2.10. Corollary 3. P is projective iff the functor Hom(P, ·):Q → Q is exact.

Proof. Let P be projective. Let

0 −→ R −→ Q
v

−→ S −→ 0

be an exact sequence. For every morphism g:P → S there is a morphism f :P → Q such that

g = v ◦ f . Thus, the morphism Hom(P,Q) → Hom(P, S) is surjective.

Let the functor Hom(P, ·) be exact. Then for every epimorphism v:Q → S and a morphism

g:P → S there is a morphism f :P → Q such that g = v ◦ f . Hence by the propostion P is

projective.

3.2.11. Remarks.

1) Projective modules over PID are free.

2) Projective modules over local rings are free.
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3.3. Injective objects

3.3.1. Definition. An object J is called injective if it is a projective object in Qop. In other

words, for every two objects R,Q, a morphism β:R → J and an monomorphism α:R → Q

0 −−−−→ R
α

−−−−→ Q

β



y

J

there is a morphism γ:Q→ J such that

β = γ ◦ α.

Note that there is not characterization of injective objects in terms of free objects.

3.3.2. Here are properties of injective objects similar to those of projective.

1) The product of objects is injective iff each object is injective.

2) If J is injective, then for every three objects S,R,Q and a diagram

Q
δ

−−−−→ R
α

−−−−→ S

β



y

J

with exact row and β ◦ δ = 0 there is a morphism ε:S → J such that β = ε ◦ α.

3) J is injective iff the functor Hom(·, J):Q → Q is exact.

4) J is injective ⇒ every short exact sequence

0 −→ J −→ Q −→ R −→ 0

splits.

3.3.3. For every object Q there is an injective object J and a monomorphism Q → J . The

proof is a little tricky and is omitted.

Using this result one can replace ⇒ in 4) by ⇔.

3.3.4. Definition. An A-module Q is called divisible if for every q ∈ Q and a ∈ A which isn’t

a zero divisor there is q′ ∈ Q such that q = aq′.

For example, Q is a divisible Z-modules.

One can prove that 1) Z-module Q is injective iff Q is divisible and 2) if Q is an A-module, then

the A-module HomZ(A,Q) of all additive homomorphisms from A to Q is a divisible A-module.

3.4. Projective and injective resolutions

3.4.1 Lemma. Every object Q of Q possesses a projective resolution, i.e. there is an exact

sequence

. . . −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ Q −→ 0

in which Pi are projective objects of Q.

Proof. By 3.1.5 there is an exact sequence

0 −→ K0 −→ P0 −→ Q −→ 0
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in which P0 is a projective object (even free). For K0 there is an exact sequence

0 −→ K1 −→ P1 −→ K0 −→ 0

in which P1 is a projective object. Similarly define Kn, Pn, so we get an exact sequence

0 −→ Kn −→ Pn −→ Kn−1 −→ 0.

Define fn:Pn → Pn−1 as the composition of Pn −→ Kn−1 −→ Pn−1. Then ker(fn) coincides

with the kernel of Pn −→ Kn−1 which is equal to Kn and im(fn+1) coincides with the image of

Kn −→ Pn which is equal to Kn, so ker(fn) = im(fn+1).

3.4.2. Lemma. Let f :Q→ Q′ be a morphism in Q and let

. . . −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ Q −→ 0

. . . −→ P ′
n −→ P ′

n−1 −→ . . . −→ P ′
1 −→ P ′

0 −→ Q′ −→ 0

be projective resolutions of Q and Q′. Then there are morphism fn:Pn → P ′
n such that the

diagram

. . . −−−−→ P1 −−−−→ P0 −−−−→ Q −−−−→ 0

f1



y f0



y f



y

. . . −−−−→ P ′
1 −−−−→ P ′

0 −−−−→ Q′ −−−−→ 0

is commutative.

Proof. The morphism f0 exists since P0 is projective. The composition of the morphism

P1 → P0 → P ′
0 and the morphism P ′

0 → Q′ is zero, so by 3.2.7 there is a morphism f1:P1 → P ′
1

such that the composition of it with P ′
1 → P ′

0 coincides with P1 → P0 → P ′
0. Similarly one

constructs morphisms fn.

3.4.3. Lemma. Let

0 −→ R −→ Q −→ S −→ 0

be an exact sequence and let

. . . −→ P ′
1 −→ P ′

0 −→ R −→ 0

. . . −→ P ′′
1 −→ P ′′

0 −→ S −→ 0

be projective resolutions. Denote Pn = P ′
n⊕P

′′
n and let i′n:P ′

n → Pn, π′′
n:Pn → P ′′

n be morphisms

associated to Pn as a product and coproduct of P ′
n and P ′′

n .

Then there are morphisms αi such that Pn form a projective resolution of Q and there is a
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commutative diagram

0 0 0


y



y



y

. . . −−−−→ P ′
1 −−−−→ P ′

0

α′

0−−−−→ R −−−−→ 0

i′1



y i′0



y



y

. . . −−−−→ P1
α1−−−−→ P0

α0−−−−→ Q −−−−→ 0

π′′

1



y π′′

0



y



y

. . . −−−−→ P ′′
1 −−−−→ P ′′

0

α′′

0−−−−→ S −−−−→ 0


y



y



y

0 0 0

Proof. Since P ′′
0 is projective, there is a morphism w0:P

′′
0 → Q whose composition with

Q −→ S is equal to P ′′
0 −→ S. Due to the definition of the coproduct for the morphisms

P ′′
0 −→ Q and v0:P

′
0 −→ R −→ Q there is a morphism α0:P0 → Q such that α0 ◦ i

′
0 = v0 and

w0 ◦ π
′′
0 = α0. Therefore two left squares of the diagram are commutative.

For the Snake Lemma applied to the commutative diagram

0 −−−−→ P ′
0

i′0−−−−→ P0
π′

0−−−−→ P ′′
0 −−−−→ 0

α′

0



y α0



y α′′

0



y

0 −−−−→ R −−−−→ Q −−−−→ S −−−−→ 0

with exact rows we get an exact sequence

0 −→ ker(α′
0) −→ ker(α0) −→ ker(α′′

0 ) −→ coker(α′
0) −→ coker(α0) −→ coker(α′′

0 ).

Since α′
0 and α′′

0 are surjective, we deduce that α0 is surjective.

Consider the diagram
0 0


y



y

P ′
1 −−−−→ ker(α′

0) −−−−→ 0

i′1



y



y

P1 ker(α0) −−−−→ 0

π′′

1



y



y

P ′′
1 −−−−→ ker(α′′

0 ) −−−−→ 0


y



y

0 0

and define similarly a morphism P1 → ker(α0) which gives a morphism α1:P1 → P0. Define

further αn by induction.
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3.4.4. Similarly one can show that every object Q of Q possesses an injective resolution, i.e.

there is an exact sequence

0 −→ Q −→ J0 −→ J1 −→ . . . −→ Jn−1 −→ Jn −→ . . .

in which Ji are injective objects of Q.

3.5. Left and right derived functors. Functors Ext and Tor

3.5.1. Definition. Let F :Q → Q be a functor. For an object Q of Q let

. . . −→ Pn
vn−→ Pn−1 −→ . . . −→ P1 −→ P0 −→ Q −→ 0

be its projective resolution. Let d0 be the zero morphism from F(P0) to 0. Let dn = F(vn) for

n > 0. Then

CQ . . . −→ F(Pn)
dn−→ F(Pn−1) −→ . . . −→ F(P1)

d1−→ F(P0)
d0−→ 0

is a chain complex. Put

(LnF)(Q) = Hn(CQ).

For a morphism f :Q→ Q′ consider their projective resolutions and the commutative diagram

. . . −−−−→ P1 −−−−→ P0 −−−−→ Q −−−−→ 0

f1



y f0



y f



y

. . . −−−−→ P ′
1 −−−−→ P ′

0 −−−−→ Q′ −−−−→ 0

which exists by 3.4.2. Then we get a commutative diagram

. . . −−−−→ F(P1) −−−−→ F(P0) −−−−→ 0

F(f1)



y F(f0)



y

. . . −−−−→ F(P ′
1) −−−−→ F(P ′

0) −−−−→ 0

Define (LnF)(f): (LnF)(Q) → (LnF)(Q′) as Hn(CQ) → Hn(CQ′) which is induced by the

morphism of complexes (F(fn)):CQ → CQ′ where the latter chain complex is associated to the

the projective resolution of Q′.

Thus defined functor LnF :Q → Q is called the nth left derived functor of F .

For example, L0F(Q) = H0(CQ) is the cokernel of d1 which is = F(P0)/d1(F(P1)).

Similarly one defines the nth right derived (contravariant) functor RnF :Q → Q of a (covariant)

functor F using injective resolutions and cohomologies instead. For example, R0F(Q) = H0(CQ)

is the kernel of d0:F(J0) → F(J1).

Similarly one defines derived functors of contravariant functors.

3.5.2. We prove correctness of the definition of LnF , namely that (LnF)(Q) doesn’t depend

on the choice of a projective resolution and (LnF)(f) doesn’t depend on the choice of (fn) given

by Lemma 3.4.2.

By Lemma 3.4.2 for projective resolutions

C . . . −→ Pn
αn−→ Pn−1 −→ . . . −→ P1

α1−→ P0
α0−→ Q −→ 0,

C
′ . . . −→ P ′

n

α′

n−→ P ′
n−1 −→ . . . −→ P ′

1

α′

1−→ P ′
0

α′

0−→ Q′ −→ 0
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and a morphism f :Q→ Q′ in Q there is a commutative diagram

. . . −−−−→ P1
α1−−−−→ P0

α0−−−−→ Q −−−−→ 0

f1



y f0



y f



y

. . . −−−−→ P ′
1

α′

1−−−−→ P ′
0

α′

0−−−−→ Q′ −−−−→ 0

with morphisms fn:Pn → P ′
n. Suppose that morphisms gn:Pn → P ′

n, n ≥ 0 satisfy the same

property of Lemma 3.4.2.

Denote P−1 = Q, P−2 = 0, P ′
−1 = Q′. Put α−1 = 0, g−1 = f−1 = f .

We claim that then there are morphisms sn:Pn → P ′
n+1, n ≥ −2 such that

gn − fn = α′
n+1 ◦ sn + sn−1 ◦ αn, n ≥ −1.

Indeed, define s−2 = 0, s−1 = 0. For inductive step assume that gn −fn = α′
n+1 ◦ sn + sn−1 ◦αn.

Calculate the composition of h = gn+1 − fn+1 − sn ◦ αn+1 and α′
n+1 using the expression for

α′
n+1 ◦ sn given by the induction assumption:

α′
n+1 ◦ h = α′

n+1 ◦ (gn+1 − fn+1) − (gn − fn − sn−1 ◦ αn) ◦ αn+1

= α′
n+1 ◦ (gn+1 − fn+1) − (gn − fn) ◦ αn+1 = 0.

Now 3.2.7 implies that there is a morphism sn+1:Pn+1 → P ′
n+2 such that α′

n+2 ◦ sn+1 = h =

gn+1 − fn+1 − sn ◦ αn+1, so gn+1 − fn+1 = α′
n+2 ◦ sn+1 + sn ◦ αn+1.

Now put dn = F(αn), d′n = F(α′
n) for n > 0 and d0 = d′0 = 0; rn = F(sn) for n ≥ 0. Let

r−1 = 0. Then

F(gn) −F(fn) = d′n+1 ◦ rn + rn−1 ◦ dn for n ≥ 0.

If x is an n-cycle of C (i.e. x ∈ ker(dn)), then the difference

F(gn)(x)−F(fn)(x) = d′n+1 ◦ rn(x) + rn−1 ◦ dn(x) = d′n+1 ◦ rn(x)

belongs to the image of d′n+1, i.e. it is an n-boundary in C
′. Thus, the morphism Hn(C) →

Hn(C′) induced by fn coincides with the morphism induced by gn.

This shows that (LnF)(f) is well defined.

If
C . . . −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ Q −→ 0,

C
′ . . . −→ P ′

n −→ P ′
n−1 −→ . . . −→ P ′

1 −→ P ′
0 −→ Q −→ 0

are two projective resolutions of Q, then by the previous results we have morphisms Hn(C) →

Hn(C′) and Hn(C′) → Hn(C) both induced by the identity morphism of Q. The composition

Hn(C) → Hn(C′) → Hn(C) should coincide with the identity morphismHn(C) → Hn(C) due to

the previous arguments. Similarly the composition Hn(C′) → Hn(C) → Hn(C′) should coincide

with the identity morphism of Hn(C′). Hence Hn(C) is isomorphic to Hn(C′). Thus, LnF(Q)

doesn’t depend on the choice of a projective resolution of Q.

3.5.3. Two important examples.

1) If F is the functor Hom(T, ·) defined in 2.5.5, the nth right derived functor Rn of the functor

Hom(T, ·) defined in 2.5.5 is called the nth Ext-functor and denoted by Extn(T, ·) or, to specify

the ring A, by Extn
A(T, ·).

By 3.2.9 the covariant functor Hom(T, ·) is left exact, so if

0 −→ Q −→ J0 −→ J1 −→ . . .
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is an injective resolution, then the sequence

0 −→ Hom(T,Q) −→ Hom(T, J0) −→ Hom(T, J1) −→ . . .

is exact and thus H0(CQ) which is equal to the kernel of

d0:F(J0) = Hom(T, J0) → Hom(T, J1) = F(J1)

is isomorphic to Hom(T,Q). Thus,

Ext0(T,Q) ' Hom(T,Q).

The nth right derived fuctor Rn of the (contravariant) functor Hom(·, T ) gives nothing new:

using double cochain complexes one can prove that

RnHom(T, ·)(Q) = RnHom(·, Q)(T ).

2) For an object T define a functor (T⊗, ·):mod − A → mod − A by Q → T ⊗ Q and for a

morphism f :Q→ R put (T⊗, ·)(f):T ⊗Q→ T ⊗R as the module homomorphism induced by f .

The nth left derived functor Ln of (T⊗, ·) is called the nth Tor-functor and denoted Torn(T, ·) or

TorA
n (T, ·) One can check that Tor0(T,Q) = T ⊗Q and

Ln(T⊗, ·)(Q) ' Ln(·,⊗Q)(T ).

3.5.4. Theorem. Let

0 −→ T −→ Q −→ S −→ 0

be a short exact sequence. Let F :Q → Q be an additive functor, which means that it transforms

the sum of morphisms into the sum of the images. Then there are long exact sequences

. . . −→ LnF(T ) −→ LnF(Q) −→ LnF(S) −→ Ln−1F(T ) −→ Ln−1F(Q)

−→ Ln−1F(S) −→ . . . −→ L0F(T ) −→ L0F(Q) −→ L0F(S)

and

R0F(T ) −→ R0F(Q) −→ R0F(S) −→ R1F(T ) −→ R1F(Q)

−→ R1F(S) −→ . . . −→ RnF(T ) −→ RnF(Q) −→ RnF(S) −→ . . .

Proof. By Lemma 3.4.3 there are projective resolutions

. . . −→ P ′
1 −→ P ′

0 −→ T −→ 0,

. . . −→ P1 −→ P0 −→ Q −→ 0,

. . . −→ P ′′
1 −→ P ′′

0 −→ S −→ 0
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which form a commutative diagram

0 0 0


y



y



y

. . . −−−−→ P ′
1 −−−−→ P ′

0 −−−−→ T −−−−→ 0


y



y



y

. . . −−−−→ P1 −−−−→ P0 −−−−→ Q −−−−→ 0


y



y



y

. . . −−−−→ P ′′
1 −−−−→ P ′′

0 −−−−→ S −−−−→ 0


y



y



y

0 0 0

By 2.5.6 and 3.2.7 we know that the sequence

0 −→ F(P ′
n) → F(Pn) −→ F(P ′′

n ) −→ 0

is exact.

The diagram
0 0


y



y

A . . . −−−−→ F(P ′
1) −−−−→ F(P ′

0) −−−−→ 0


y



y

B . . . −−−−→ F(P1) −−−−→ F(P0) −−−−→ 0


y



y

C . . . −−−−→ F(P ′′
1 ) −−−−→ F(P ′′

0 ) −−−−→ 0


y



y

0 0
is commutative and every column is exact, so the sequence of complexes

0 −→ A −→ B −→ C −→ 0

is exact.

By Theorem 2.7.3 we get now the first long sequence of this theorem.

3.5.5. Examples.

1) For an exact sequence 0 −→ R −→ Q −→ S −→ 0 the sequences

0 → Hom(T,R) → Hom(T,Q) → Hom(T, S) → Ext1(T,R) → Ext1(T,Q) → . . .

and

0 → Hom(R, T ) → Hom(Q,T ) → Hom(S, T ) → Ext1(R, T ) → Ext1(Q,T ) → . . .

are exact (the exactness in the first term follows from left exactness of Hom(T, ·) and Hom(·, T )).

So Ext1 measures how far Hom(·, T ) is from an exact functor.

From 3.2.10 we deduce that T is projective iff Ext1(T,R) = 0 for all objects R.
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2) For an exact sequence 0 −→ R −→ Q −→ S −→ 0 the sequence

. . . −→ Tor1(T,R) −→ Tor1(T,Q) −→ Tor1(T, S) → T ⊗R −→ T ⊗Q −→ t⊗ S → 0

is exact (the exactness in the last term follows from right exactness of (T⊗, ·)).

So Tor1 measures how far (T⊗, ·) is from an exact functor.
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4. Group cohomologies

4.1. Category fGr −mod

4.1.1. Let G be a finite group. The group ring Z[G] by definition consists of
∑

g∈G agg with

ag ∈ Z with operations

∑

agg +
∑

bgg =
∑

(ag + bg)g, (
∑

agg)(
∑

bgg) =
∑

agbg′gg′ =
∑

cgg

where cg =
∑

h ahbh−1g.

An abelian group A is called a G-module if A is a left Z[G]-module. It means there is an

operation G× A→ A, (g, a) → ga such that g(a+ b) = ga+ gb, (gh)a = g(ha).

A morphism f :A→ B of Z[G]-modules is called a morphism of G-modules.

An abelian group A is called a trivial G-module if ga = a for every a ∈ A. For example, Z is a

trivial G-module.

4.1.2. Define a category fGr−mod whose objects are couples (G,A) where A is a G-module,

G is a finite group and whose morphisms are couples (ϕ,ψ): (G,A) → (G′, A′) where ϕ:G′ → G

and ψ:A → A′ are group homomorphisms and ψ(ϕ(g)a) = gψ(a) for all a ∈ A, g ∈ G′.

In particular, if H is a subgroup of G we have a morphism called restriction

res = (inc, id): (G,A) → (H,A)

where inc:H → G is the inclusion of groups.

If f :A → B is a homomorphism of G-modules, we have a morphism (id, f): (G,A) → (G,B)

in fGr −mod.

4.2. Complexes D(G,A) and C(G,A)

4.2.1. For a G-module A and n ≥ 0 define abelian groups

Dn(G,A) ={maps α:G × · · · ×G
︸ ︷︷ ︸

n+1 times

→ A

such that α(gg0, . . . , ggn+1) = gα(g0, . . . , gn+1) for all g ∈ G}.

The addition is given by the sum of maps.

Note that there is an isomorphism of abelian groups u0:D0(G,A) → A given by α → α(1).

The inverse isomorphism v0:A → D0(G,A) is given by a→ α, α(g) = ga.

Define dn = dn
D:Dn(G,A) → Dn+1(G,A) for n ≥ 0 by

dn(α)(g0, . . . , gn+1) =

n+1∑

i=0

(−1)iα(g0, . . . , ĝi, . . . , gn+1)

where ĝi means gi is excluded. Then indeed

(dnα)(gg0, . . . , ggn+1) = g(dnα)(g0, . . . , gn+1).



22

We get dn ◦ dn−1 = 0 for n ≥ 1, since

(dn ◦ dn−1(α))(g0, . . . , gn+1)

=
∑

0≤i<j≤n+1

((−1)i+j + (−1)i+j−1)α(g0, . . . , ĝi, . . . , ĝj , . . . , gn+1) = 0.

We get a cochain complex

0 −→ D0(G,A)
d0

−→ D1(G,A)
d1

−→ D1(G,A) −→ . . . −→ Dn(G,A)
dn

−→ Dn+1(G,A) −→ . . .

which we denote by D(G,A).

4.2.2. Definition. The nth cohomology group Hn(G,A) of the G-module A is Hn(D(G,A)).

4.2.3. For a G-module A and n > 0 define abelian groups

Cn(G,A) = {maps β:G× · · · ×G
︸ ︷︷ ︸

n times

→ A}.

Put C0(G,A) = A.

Define un:Dn(G,A) → Cn(G,A) for n > 0 by un(α) = β where

β(g1, . . . , gn) = α(1, g1, g1g2, . . . , g1g2 . . . gn).

Define vn:Cn(G,A) → Dn(G,A) by vn(β) = α where

α(g0, . . . , gn) = g0β(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn).

Note that indeed gα(g0, . . . , gn) = α(gg0, . . . , ggn) since

gg0β(g−1
0 g1, . . . , g

−1
n−1gn) = gg0β((gg0)

−1(gg1), . . . , (ggn−1)
−1ggn).

Then un ◦ vn and vn ◦ un are identity maps for n > 1:

un ◦ vn(β)(g1, . . . , gn) = vn(β)(1, g1, g1g2, . . . , g1 . . . gn) = 1β(g1, . . . , gn) = β(g1, . . . , gn),

and vn ◦ un(α)(g0, . . . , gn) = g0u
n(α)(g−1

0 g1, . . . , g
−1
n−1gn) = g0α(1, g−1

0 g1, . . . , g
−1
0 gn)

= α(g0, . . . , gn).

Thus, Cn(G,A) is isomorphic to Dn(G,A) for n ≥ 0 (use u0, v0 from 4.2.1).

Define dn
C :Cn(G,A) → Cn+1(G,A) as the composition un+1 ◦ dn

D ◦ vn, then

0 −→ C0(G,A)
d0
C−→ C1(G,A) −→ . . . −→ Cn(G,A)

dn
C−→ Cn+1(G,A) −→ . . .

is a cochain complex C(G,A) isomorphic to the complex D(G,A) and so

Hn(G,A) = Hn(C(G,A)).

Explicitly, d0
C(a)(g) = ga− a for all g ∈ G and for n ≥ 1

dn
C(β)(g1, . . . , gn+1)

= g1β(g2, . . . , gn+1) +

n∑

i=1

(−1)iβ(g1, . . . , gigi+1, . . . , gn+1) + (−1)n+1β(g1, . . . , gn)

and dn
C = 0 for n < 0. Indeed,

d0
Cα(1, g1) = α(g1) − α(1) = g1α(1) − α(1)
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and
dnα(1, g1, g1g2, . . . , g1 . . . gn+1) = α(g1, g1g2, . . . , g1 . . . gn+1)

+

n∑

i=1

(−1)iα(1, g1, . . . , g1 . . . gi−1, g1 . . . gigi+1, . . . , g1 . . . gn+1)

+ (−1)n+1α(1, g1, . . . , g1 . . . gn).

4.2.4. A morphism (ϕ,ψ): (G,A) → (G′, A′) in fGr −mod induces a morphism D(G,A) →

D(G′, A′) and hence a morphism Hn(G,A) → Hn(G′, A′). In particular, a morphism of G-

modules f :A → B induces a morphism f̃ :D(G,A) → D(G,B), α ∈ Dn(G,A) → f ◦ α ∈

Dn(G,B).

4.3. Small cohomology groups

4.3.1. H0(G,A) = ker d0 consists of maps α:G → A such that α(g0) = α(g1) for all g0, g1 ∈

G and gα(g1) = α(gg1). So α(g1) = a ∈ A for all g1 ∈ G and ga = a for all g ∈ G, i.e.

a belongs to the subgroup AG of A consisting of fixed elements under the action of G. Thus,

H0(G,A) = AG.

4.3.2. H1(G,A) coincides with ker(d1
C)/ im(d0

C). The ”numerator” consists of maps β:G→ A

such that g1β(g2) − β(g1g2) + β(g1) = 0, i.e.

β(g1g2) = g1β(g2) + β(g1),

such β are called crossed homomorphisms (1-cocycles). If G acts trivially on A, then cross homo-

morphisms are just homomorphisms. The ”denominator” consists of maps β:G → A such that

for some a ∈ A

β(g) = ga− a for all g ∈ G

called principal crossed homomorphisms (1-coborders). Thus H1(G,A) measures ”how many”

crossed homomorphisms are not principal.

4.4. Long sequence of cohomology groups

4.4.1. Let

0 −→ A
k

−→ B
l

−→ C −→ 0

be a short exact sequence of G-modules. Then the sequence of complexes

0 −→ C(G,A)
k̃

−→ C(G,B)
l̃

−→ C(G,C) −→ 0

is exact. So by the theorem 2.7.3 we get a long exact sequence of groups

. . .
δn−1

−→ Hn(G,A)
kn

−→ Hn(G,B)
ln

−→ Hn(G,C)
δn

−→ Hn+1(G,A) −→ . . .

the first terms of which are

0 −→ AG −→ BG −→ CG −→ H1(G,A) −→ H1(G,B) −→ H1(G,C) −→ . . .

(exactness at AG follows from injectivity of A→ B).
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4.4.2. Consider the functor FG: Z[G]−mod → Z[G]−mod: FG(A) = AG, FG(f) = f :AG →

BG for f :A→ B.

If 0 −→ A −→ J0 −→ J1 −→ . . . is an injective resolution of A, then the sequence 0 −→

AG −→ JG
0 ≤ JG

1 is exact, so from 3.5 we deduce that FG = R0(FG). Now from 4.4.1 one can

deduce that Hn(G, ·) is the nth right derived functor of the functor FG.

Remark. Using the properties of Extn(Q,T ) from 3.5.3 and 3.5.5 and the equality

Ext0
Z[G](Z, A) = HomZ[G](Z, A) = AG = H0(G,A)

one can show that

Hn(G,A) = Extn
Z[G](Z, A).

The nth homology group Hn(G,A) of the G-module A is defined as TorZ[G]
n (Z, A).

4.4.3. If

0 −→ A −→ B −→ C −→ 0, 0 −→ A′ −→ B′ −→ C ′ −→ 0

are exact sequences, then from 2.7.4 we deduce that the diagram

0 −−−−→ AG −−−−→ BG −−−−→ CG −−−−→ H1(G,A) −−−−→ H1(G,B) −−−−→ . . .


y



y



y



y



y

0 −−−−→ A′G −−−−→ B′G −−−−→ C ′G −−−−→ H1(G,A′) −−−−→ H1(G,B′) −−−−→ . . .

is commutative.

4.5. Cohomologies of a group and its subgroup

4.5.1. Let H be a subgroup of a finite group G. Let A be an H-module. Then the set

MH
G (A) = HomZ[H](Z[G], A)

of all H-morphisms from Z[G] to A, i.e. all maps α:G→ A satisfying

α(hg) = hα(g) for all h ∈ H

is a G-module with respect to the action G×MH
G (A) →MH

G (A): α→ gα, (gα)(g′) = α(g′g).

A morphism f :A→ B induces a morphism f̃ :MH
G (A) →MH

G (B).

4.5.2. Lemma. Let A be an abelian group. For α ∈ M
{1}
G (A) and h ∈ H, g ∈ G define

(l(α)(g))(h) = α(hg). Then l(α) belongs to MH
G (M

{1}
H A and we get a map

l:M
{1}
G (A) →MH

G (M
{1}
H A).

Moreover, l is an isomorphism of G-modules M
{1}
G (A) and MH

G (M
{1}
H A).

Proof. First, l(α) belongs to MH
G (M

{1}
H A), i.e. h′(l(α)(g)) = l(α)(h′g) for h′ ∈ H. Indeed,

(h′(l(α)(g)))(h) = (l(α)(g))(hh′) = α(hh′g) = (l(α)(h′g))(h).

Furthermore, l is a homomorphism of G-modules: since (l(g′α)(g))(h) = g′α(hg) = α(hgg′) =

(l(α)(gg′))(h), we get l(g′α)(g) = l(α)(gg′) and l(g′α) = g′l(α) for g′ ∈ G.

Now define a map

m:MH
G (M

{1}
H A) →M

{1}
G (A)
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by m(β)(g) = (β(g))(1) for β ∈MH
G (M

{1}
H A), g ∈ G. Then (m◦ l)(α)(g) = (l(α)(g))(1) = α(g)

and

(l ◦m)(β)(g)(h) = m(β)(hg) = (β(hg))(1) = (hβ(g))(1) = β(g)(h)

since β ∈MH
G (M

{1}
H A). Thus, m and l are isomorphisms of G-modules.

4.5.3. Define c:MH
G (A) → A by the formula c(α) = α(1). Then c(hα) = (hα)(1) = α(h) =

hα(1) = hc(α), so according to the definition of the category fGr − mod given at 4.1.2, the

inclusion H ⊂ G and the homomorphism c induce a map (G,MH
G (A)) → (H,A) in the category

fGr −mod. So we get a homomorphism Hn(G,MH
G (A)) → Hn(H,A).

4.5.4. Lemma. Let 0 −→ A
µ

−→ B
ρ

−→ C −→ 0 be an exact sequence of H-modules, then

0 →MH
G (A)

µ̃
−→MH

G (B)
ρ̃

−→MH
G (C) → 0

is an exact sequence of G-modules.

Proof. We get a sequence of G-modules

0 −→MH
G (A)

µ̃
−→MH

G (B)
ρ̃

−→MH
G (C) −→ 0.

Exactness at MH
G (A) is easy to check.

Check exactness at MH
G (C). Let γ ∈MH

G (C). Write G as a disjoint union of right cosets Hgi.

Then γ(gi) = ρ(bi) for some bi ∈ B. Define a map β:G → B by hgi → hbi. Then β ∈ MH
G (B)

and γ = ρ̃(β).

Check exactness in the middle term. First ρ̃ ◦ µ̃ = 0. Second, if ρ̃(β) = 0, then for every g ∈ G

ρ(β(g)) = 0, so β(g) = µ(ag) for a uniquely determined ag ∈ A. Define α:G → A by g → ag.

Then α ∈ MH
G (A): µ(hα(g)) = µ(hag) = hµ(ag) = hµ(α(g)) = hβ(g) = β(hg) = µ(α(hg)), so

from injectivity of µ we deduce that hα(g) = α(hg). Thus α ∈MH
G (A) and β = µ̃(α).

4.5.5. Lemma. Hn(G,M
{1}
G (A)) = 0 for n > 0.

Proof. Define a map sn:Cn(G,M
{1}
G (A)) → Cn−1(G,M

{1}
G (A)) by

sn(α)(g1, . . . , gn−1)(g) = α(g, g1, . . . , gn−1)(1).

Now

dn−1sn(α)(g1, . . . , gn)(g) = g1s
n(α)(g2, . . . , gn)(g)

+
n−1∑

i=1

(−1)isn(α)(g1, . . . , gigi+1, . . . , gn)(g) + (−1)nsn(α)(g1, . . . , gn−1)(g) =

sn(α)(g2, . . . , gn)(gg1) +
n−1∑

i=1

(−1)isn(α)(g1, . . . , gigi+1, . . . , gn)(g)

+ (−1)nsn(α)(g1, . . . , gn−1)(g)

= α(gg1, g2, . . . , gn)(1) +
n−1∑

i=1

(−1)iα(g, g1, . . . , gigi+1, . . . , gn)(1)

+ (−1)nα(g, g1, . . . , gn−1)(1)
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and
sn+1dn(α)(g1, . . . , gn)(g) = dnα(g, g1, . . . , gn)(1) = gα(g1, . . . , gn)(1)

− α(gg1, g2, . . . , gn)(1) +

n∑

i=2

(−1)iα(g, . . . , gi−1gi, . . . , gn)(1)

+ (−1)n+1α(g, g1, . . . , gn−1)(1) = α(g1, . . . , gn)(g)− α(gg1, g2, . . . , gn)(1)

+
n∑

i=2

(−1)iα(g, . . . , gi−1gi, . . . , gn)(1) + (−1)n+1α(g, g1, . . . , gn−1)(1).

Thus dn−1 ◦ sn + sn+1 ◦ dn is the identity map of Cn(G,M
{1}
G (A)). Hence if dn(α) = 0, then

α belongs to the image of dn−1, thus Hn(G,M
{1}
G (A)) = 0.

4.5.6. Theorem. Let H be a subgroup of a finite group G. Let A be an H-module. Then the

homomorphism

Hn(G,MH
G (A)) → Hn(H,A)

is an isomorphism.

Proof. First check the theorem for n = 0. From 4.5.3 we get the homomorphism

c′:MH
G (A)G → A, c′(α) = α(1).

If α ∈ MH
G (A)G, then α(hg) = hα(g) for all h ∈ H and α(g′) = gα(g′) = α(g′g) for all g ∈ G.

So α:G → A is a constant map. We deduce that hα(1) = α(h) = α(1), i.e. c′(α) ∈ AH . So

c′(MH
G (A)) ⊂ AH .

Define a homomorphism b:AH →MH
G (A)G by a→ α, α(g) = a for all g ∈ G.

Then c′ and b are inverse to each other, and so are isomorphisms. That proves the case n = 0.

Now argue by induction on n.

There is a homomorhism of H-modules A → M
{1}
H (A), a → α, α(h) = a for all h ∈ H. It is

injective, so we have an exact sequence of H-modules

0 −→ A −→M
{1}
H (A) −→ X → 0.

Apply Lemma 4.5.4 and get an exact sequence

0 −→MH
G (A) −→MH

G (M
{1}
H (A)) −→MH

G (X) −→ 0

of G-modules. The middle term is isomorphic to M
{1}
G (A) according to Lemma 4.5.2.

Now we get a long sequence of cohomological groups and the commutative diagram

. . . −→ Hn(G,MH
G (X)) −→ Hn+1(G,MH

G (A)) −→ Hn+1(G,M
{1}
G (A)) −→ . . .



y



y



y

. . . −→ Hn(H,X) −→ Hn+1(H,A) −→ Hn+1(H,M
{1}
H (A)) −→ . . . .

The left vertical arrow is an isomorphism by the inductional assumption. The right vertical arrow

is an isomorphism, since both groups are zero by Lemma 4.5.5. Thus, by the Snake Lemma the

central vertical arrow is an isomorphism.

4.5.7. Remark. The theorem implies that if Y is defined from the exact sequence

0 −→ A −→M
{1}
G (A) −→ Y → 0,

then

Hn+1(G,A) ' Hn(G,Y ).
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This can be used to define group cohomologies by induction in n

4.5.8. For a G-module A the restriction map res = (inc, id): (G,A) → (H,A) from 4.1.2

induces a homomorphism resn:Hn(G,A) → Hn(H,A) which is called a restriction.

For example, res0:AG → AH is the inclusion AG ⊂ AH .

Define a map x:A→MH
G (A) by x(a) = αa, αa(g) = ga. It is a homomorphism of G-modules,

since

x(g1a)(g) = gg1a = αa(gg1) = g1x(a)(g).

So we get a morphism (G,A) → (G,MH
G (A)) in fGr −mod.

The composition Hn(G,A) → Hn(G,MH
G (A)) → Hn(H,A) which uses the isomorphism of

Theorem 4.5.6 corresponds to the morphism (G,A) → (G,MH
G (A)) → (H,A) in fGr − mod

which is explicitly desribed as the map c◦x: a → αa(1) = a on A and the inclusion H ⊂ G. Thus,

the restriction resn coincides with the composition

Hn(G,A) → Hn(G,MH
G (A)) → Hn(H,A).

4.5.9. Define a map y:MH
G (A) → A by

y(α) =
∑

g∈S

g(α(g−1))

where g ∈ S runs through any set of elements of G such that G is a disjoint union of gH. If

{g′ ∈ S′} form another set with this property, then for every g′ ∈ S′ there is a unique g ∈ S such

that g′H = gH, i.e. g′ = gh, h ∈ H. Then

g′(α(g′
−1

)) = gh(α(h−1g−1)) = g(α(hh−1g−1)) = g(α(g−1)),

so the map y doesn’t depend on the choice of S.

The map y is a homomorphism of G-modules:

y(g1α) =
∑

g∈S

g((g1α)(g−1)) =
∑

g∈S

g((α)(g−1g1))

=
∑

g∈S

g1g
−1
1 g((α)((g−1

1 g)−1)) =
∑

g′∈S′=g−1
1 S

g1g
′((α)(g′

−1
)) = g1y(α),

since G is the disjoint union of g−1
1 gH where g runs over all elements of S.

So we get a morphism (id, y): (G,MH
G (A)) → (G,A) in fGr − mod and there is a homo-

morphism Hn(G,MH
G (A)) → Hn(G,A). Using the isomorphism of Theorem 4.5.6 we get a

homomorphism

corn:Hn(H,A) → Hn(G,MH
G (A)) → Hn(G,A)

which is called a corestriction.

For example, cor0:AH → AG is defined as cor0(a) =
∑

g∈S ga.

4.5.10. Since the composition A
x

−→MH
G (A)

y
−→ A is equal to

a→ αa →
∑

g∈S

g(αa(g−1)) =
∑

g∈S

gg−1a = |G : H|a,

we conclude from 4.5.8 and 4.5.9 that the composition

Hn(G,A)
resn

−→ Hn(H,A)
corn

−→ Hn(G,A)

is equal to multiplication by the index |G : H|.
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Alternatively we can look at n = 0 where it is obvious that cor ◦ res = |G : H| and then use

Remark 4.5.7 and the commutative diagram

Hn(G,Y ) −−−−→ Hn+1(G,A)

resn



y resn+1



y

Hn(H,Y ) −−−−→ Hn+1(H,A)

corn



y corn+1



y

Hn(G,Y ) −−−−→ Hn+1(G,A)

to prove the result in the previous paragraph by induction on n.

Since for n = 0 the composition res0 ◦ cor0:AH → AH is equal to a→
∑

g∈S ga we can deduce

in the same way as above that

Hn(H,A)
cor
−→ Hn(G,A)

res
−→ Hn(H,A)

is equal to f →
∑

g∈S gf for f ∈ Hn(H,A).


