Formulario di Fisica 2

Flaminia Germoni

 $a.\,a.\,2000/2001$

1 Elettrostatica

1.1 operatori:

	cartesiane	cilindriche	polari
$d\overrightarrow{l}$	dx, dy, dz	d ho, ho darphi,dz	$dr, rd\vartheta, r\sin\vartheta darphi$
$(\overrightarrow{grad}f)$	$(\nabla f)_x = \frac{\partial f}{\partial x}$	$(abla f)_{ ho} = rac{\partial f}{\partial ho}$	$(\nabla f)_r = \frac{\partial f}{\partial r}$
	$(\nabla f)_y = \frac{\partial f}{\partial y}$	$(\nabla f)_{\varphi} = \frac{1}{\rho} \frac{\partial f}{\partial \varphi}$	$(\nabla f)_{\vartheta} = \frac{1}{r} \frac{\partial f}{\partial \vartheta}$
	$(\nabla f)_z = \frac{\partial f}{\partial z}$	$(\nabla f)_z = \frac{\partial f}{\partial z}$	$(\nabla f)_{\varphi} = \frac{1}{r \sin \vartheta} \frac{\partial f}{\partial \varphi}$
$div \overrightarrow{v}$	$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$\frac{1}{\rho} \frac{\partial (\rho v_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial v_{\varphi}}{\partial \varphi} + \frac{\partial v_{z}}{\partial z}$	$\frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta v_\vartheta)}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial v_\varphi}{\partial \varphi}$
$rot \overrightarrow{v}$	$ \begin{array}{cccc} i & j & k \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ v_x & v_y & v_z \end{array} $	$(rot \overrightarrow{v})_{\rho} = \frac{1}{\rho} \frac{\partial v_z}{\partial \varphi} - \frac{\partial v_{\varphi}}{\partial z}$	$(rot \overrightarrow{v})_r = \frac{1}{r \sin \vartheta} \left(\frac{\partial (\sin \vartheta v_\varphi)}{\partial \vartheta} - \frac{\partial v_\vartheta}{\partial \varphi} \right)$
	v	$(rot \overrightarrow{v})_{\varphi} = \frac{\partial v_{\rho}}{\partial z} - \frac{\partial v_{z}}{\partial \rho}$	$(rot \overrightarrow{v})_{\vartheta} = \frac{1}{r \sin \vartheta} \frac{\partial v_r}{\partial \varphi} - \frac{1}{r} \frac{\partial (rv_{\varphi})}{\partial r}$
		$(rot \overrightarrow{v})_z = \frac{1}{\rho} \left(\frac{\partial (\rho v_{\varphi})}{\partial \rho} - \frac{\partial v_{\rho}}{\partial \varphi} \right)$	$(rot \overrightarrow{v})_{\varphi} = \frac{1}{r} \left(\frac{\partial (rv_{\vartheta})}{\partial r} - \frac{\partial v_r}{\partial \vartheta} \right)$

Il gradiente dà come risultato un vettore, mentre la divergenza uno scalare.

1.1.1 Operazioni tra operatori:

$$\begin{split} &rot grad = 0 \\ &divrot = 0 \\ ÷ grad f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \overrightarrow{\nabla}(\overrightarrow{\nabla}f) \\ ÷ grad v = (\nabla^2 v_x, \nabla^2 v_y, \nabla^2 v_z) = (\overrightarrow{\nabla}\overrightarrow{\nabla})\overrightarrow{v} \\ &rot rot \overrightarrow{v} = \overrightarrow{\nabla} \wedge (\overrightarrow{\nabla} \wedge \overrightarrow{v}) = \overrightarrow{\nabla}(\overrightarrow{\nabla}\overrightarrow{v}) - (\overrightarrow{\nabla}\overrightarrow{\nabla})\overrightarrow{v} = grad div \overrightarrow{v} - \nabla^2\overrightarrow{v} \\ &\text{il risultato di questo operatore è un vettore.} \end{split}$$

Campi Elettrici: 1.2

$$\overrightarrow{E} = \frac{q}{4\pi\varepsilon_0 r^2}$$

$$V = \frac{q}{4\pi\varepsilon_0 r}$$

$$\overrightarrow{E} = -\overrightarrow{grad}V = -\overrightarrow{\nabla}V = potenziale \ elettrico$$

$$densit\'{a} \ lineare : \lambda = \frac{dq}{dl}$$

$$densit\'{a} \ superficiale : \sigma = \frac{dq}{dS}$$

1.3 Forza di Coulomb:

$$\overrightarrow{F} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} = q E_0$$

Teorema diGauss:

$$\phi_s = \int_s \overrightarrow{E} d\overrightarrow{S} = \frac{Q_{tot}^{int}}{\varepsilon_0}$$

 $\phi_s = \int_s \overrightarrow{E} \, d\overrightarrow{S} = \frac{Q_{tot}^{int}}{\varepsilon_0}$ Il teorema di Gauss è utile nel caso in cui il sistema sia dotato di simmetria sferica.

simmetria sferica	$\overrightarrow{E} = \frac{q}{4\pi\varepsilon_0 r^2}$	$V = \frac{q}{4\pi\varepsilon_0 r}$	$V(\infty) = 0$
simmetria cilindrica	$\overrightarrow{E} = \frac{\lambda}{2\pi\varepsilon_0 r}$	$V = -\frac{\lambda}{2\pi\varepsilon_0} \ln(\frac{r}{r_0})$	$V(r_0) = 0$
simmetria piana	$\overrightarrow{E} = \frac{\sigma}{2\varepsilon_0}$	$V = -\frac{\sigma}{2\varepsilon_0}x$	V(0) = 0

Energia del Campo Elettrico: 1.5

$$\begin{array}{l} U = -\overrightarrow{E}\overrightarrow{p} = Vq\\ \overrightarrow{p} = \delta q = momento\ di\ dipolo\\ V = \frac{\overrightarrow{p}r}{4\pi\varepsilon_0 r} = \frac{q}{4\pi\varepsilon_0 r} \end{array}$$

Dipolo: 1.6

Campo Elettrico: $\overrightarrow{E} = \frac{1}{4\pi\varepsilon_0} \frac{q\delta}{r^3} = \frac{1}{4\pi\varepsilon_0} \frac{\overrightarrow{p}}{r^3}$

Potenziale: $V = \frac{q}{4\pi\varepsilon_0} (\frac{1}{r_1} - \frac{1}{r_2}) = \frac{q}{4\pi\varepsilon_0} (\frac{r_2 - r_1}{r_2 r_1})$

approssimazione di dipolo:
$$r \gg d$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q\delta\cos\vartheta}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{\overrightarrow{\mathcal{P}}\cos\vartheta}{r^2}$$

Campo elettrico in coordinate polari:
$$\overrightarrow{E_r} = \frac{1}{4\pi\varepsilon_0} \frac{2p\cos\vartheta}{r^3} \ \overrightarrow{E_\vartheta} = \frac{1}{4\pi\varepsilon_0} \frac{p\sin\vartheta}{r^3}$$

1.7Conduttore:

Condizione d'equilibrio: $\overrightarrow{E} = 0$ V = cost $\rho = 0$

Capacità: $C = \frac{q}{V}$

Lavoro di estrazione: $\triangle V = V_i - V_e = -\frac{L_e}{q}$

Il campo elettrico interno ad un conduttore è nullo.

Continuità della componente tangenziale del campo elettrico: Passando da un mezzo ad un altro la componente del campo elettrico tangente alla superficie di separazione NON può subire discontinuità.

In vicinanza di un conduttore il campo elettrostatico è ORTOGONALE alla superficie del conduttore stesso.

La componente del campo elettrostatico normale alla superficie di un conduttore subisce una discontinuità.

Il volume interno ai conduttori e la superficie che delimita i conduttori sono EQUIPOTENZIALE.

In elettrostatica la carica posseduta da un conduttore si distribusce in superficie.

Teorema di Coulomb:

In un punto vicino ad un conduttore, il campo elettrico ha modulo pari a $\frac{\sigma}{\varepsilon_0}$ ed è diretto se condo la normale : uscente se $\sigma>0$; entrante se $\sigma<0$. $\overrightarrow{E}_e=\frac{\sigma}{\varepsilon_0}$ $\overrightarrow{E}_i=0$

In prossimità della superficie il campo elettrico dipende SOLO dalla DEN-SITA'

SITA'
$$\sigma \propto \frac{1}{R} \overrightarrow{E} \propto \sigma$$

$$\sigma = \overrightarrow{E} \varepsilon_0 = \frac{q}{4\pi r^2} \quad \sigma_2 = -\sigma_1 \frac{R^2_1}{R^2_2}$$

$$\frac{\sigma_1}{\sigma_2} = \frac{R_2}{R_1} \quad \sigma = \frac{Q}{S}$$
Induzione Completa:

la somma delle cariche indotte è nulla;

le cariche indotte si distribuiscono in modo da rendere equipotenziale il conduttore.

Energia di interazione:
$$U = \frac{1}{2} \sum q_i V_i$$
 discreto $U = \frac{1}{2} \int_{\tau} \rho V d\tau$ continuo

1.8 Condensatori:

Energia:
$$U = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$$

Densità di energia:

$$u = \frac{U}{V} = \frac{1}{2}\varepsilon_0 E^2$$

Forza:

$$f_x = \frac{\delta U}{\delta x}$$

Capacità:

$$C = \frac{Q}{\Delta V}$$

Condensatori in parallelo: stessa differenza di potenziale;

 $C = C_1 + C_2.$

Condensatori in serie:

stessa carica;

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}.$$

Capacità:

Condensatore sferico: $C = 4\pi\varepsilon_0 \frac{R_1R_2}{R_2-R_1}$

Condensatore cilindrico: $C = 2\pi \varepsilon_0 l \frac{1}{\ln(\frac{R_2}{R_1})}$

Condensatore piano: $C = \varepsilon_0 \frac{S}{d}$

Dielettrici: 1.9

All'interno dei dielettrici: $\overrightarrow{E} \neq 0$ $\overrightarrow{E} < \overrightarrow{E_0}$ $V = \int_0^\infty \overrightarrow{E} \, d \overrightarrow{l} = \int_R^\infty E(r) dr$

momento di dipolo: $\overrightarrow{p} = \alpha \overrightarrow{E}$

Polarizzabilità:

per deformazione: $\alpha_d = 4\pi\varepsilon_0 R^3$ per orientazione: $\alpha_0 = \frac{p_0^2}{3KT}$

Vettore Polarizzazione Elettrica (intensità di polarizzazione):

$$\overrightarrow{P} = \frac{\sum \overrightarrow{p_i}}{d\tau} = \varepsilon_0 \chi$$

Suscettività elettrica:

$$\chi = (\varepsilon_r - 1)$$

$$\alpha = \alpha_d + \alpha_0 = \frac{3\varepsilon_0}{n} \frac{\varepsilon_r - 1}{\varepsilon_r + 2}$$

Spostamento elettrico:
$$\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P} = \varepsilon_0 (\chi + 1) \overrightarrow{E} = \varepsilon \overrightarrow{E}$$

$$E_r = \frac{D(r)}{\varepsilon_r \varepsilon_0}$$
 $E_0 = \frac{D}{\varepsilon_0}$

$$D = D_0 E = \frac{E_0}{\varepsilon_r} V = \frac{V_0}{\varepsilon_r}$$

$$\overrightarrow{P} = \chi \varepsilon_0 \overrightarrow{E} = (\varepsilon_r - 1)\varepsilon_0 \overrightarrow{E} = \frac{\varepsilon_r - 1}{\varepsilon_r} \overrightarrow{D}$$

Polarizzazione superficiale:

$$\sigma_p = \overrightarrow{P} \overrightarrow{n} = \varepsilon_0 (\varepsilon_r - 1) \overrightarrow{E} = (\frac{\varepsilon_r - 1}{\varepsilon_r}) \overrightarrow{L}$$

 $\sigma_p = \overrightarrow{P} \overrightarrow{n} = \varepsilon_0(\varepsilon_r - 1) \overrightarrow{E} = (\frac{\varepsilon_r - 1}{\varepsilon_r}) \overrightarrow{D}$ $\sigma_p = \text{densità di cariche polarizzate nella superficie del dielettrico.}$

$$\rho_p^r = -div \overrightarrow{P}$$

 $\rho_p{=}{\rm densit\grave{a}}$ di cariche polarizzate nel dielettrico; se P è uniforme $\rho_p=0$

Teorema di Gauss:
$$\phi_s(\overrightarrow{D}) = \int_s \overrightarrow{D} d\overrightarrow{S} = Q_i$$

Teorema di Coulomb: $\overrightarrow{D} = \sigma n = \frac{Q}{S}$

$$\overrightarrow{D} = \sigma n = \frac{Q}{S}$$

Considerando due mezzi:

$$\begin{array}{l} D_{n1}=D_{n2}; \ \varepsilon_1 E_{n1}=\varepsilon_2 E_{n2} \\ E_{t1}=E_{t2}; \ \frac{D_{t1}}{\varepsilon_1}=\frac{D_{t2}}{\varepsilon_2} \end{array}$$

Legge di rifrazione delle linee di forza del campo elettrico: $\frac{\frac{E_{t1}}{\varepsilon_1 E_{n1}}}{\frac{\varepsilon_1 E_{n1}}{\varepsilon_1 E_{n1}}} = \frac{\frac{E_{t2}}{\varepsilon_2 E_{n2}}}{\frac{\varepsilon_2 E_{n2}}{\varepsilon_1}}$ $\frac{\tan \vartheta_1}{\tan \vartheta_2} = \frac{\varepsilon_1}{\varepsilon_2}$ $\tan \vartheta_1 = \frac{E_{t1}}{E_{n1}}; \tan \vartheta_2 = \frac{E_{t2}}{E_{n2}}$

$$\frac{E_{t1}}{\varepsilon_1 E_{n1}} = \frac{E_{t2}}{\varepsilon_2 E_{n2}}$$

$$\tan \vartheta_1 = \frac{E_{t1}}{E}; \tan \vartheta_2 = \frac{E_{t2}}{E}$$

$$U = \frac{Q^2}{2C} = \frac{CV^2}{2} = \frac{1}{2} \int \overrightarrow{E} \overrightarrow{D} d\tau$$

1.10 Corrente elettrica:

Corrente elettrica: $I = \frac{dQ}{dt} = \overrightarrow{J} d\overrightarrow{S}$ Densità di corrente: $\overrightarrow{J} = nq\overrightarrow{v_d}$ $\overrightarrow{v_d} = \overrightarrow{E} K$

Principio di conservazione della carica: $\overrightarrow{\Delta}\overrightarrow{J}+\frac{\partial\rho}{\partial t}=0$

Resistività:

$$R = \rho \frac{l}{S} = \frac{1}{\sigma} \frac{l}{S}$$

Legge di Ohm:

$$\Delta V = RI$$

 $\overrightarrow{E}=\rho\overrightarrow{J}$ è una relazione locale=legge di Ohm in forma microscopica. $\rho = \frac{1}{\sigma}$ $\rho =$ resistività; $\sigma =$ conduttività.

$$L = QV$$

$$W=\frac{dL}{dt}=I\Delta V{=}{\rm legge}$$
di Joule

Densità di potenza dissipata: $w = \overrightarrow{E} \overrightarrow{J} = \frac{dL}{d\tau dt}$

$$w = \overrightarrow{E}\overrightarrow{J} = \frac{d\overrightarrow{L}}{d\tau dt}$$

Forza elettromotrice:

$$f = \oint \overrightarrow{E} d \overrightarrow{l} = \frac{dL}{dQ}$$

 $w=fI=I(V_a-V_b+w^d=$ potenza erogata dal generatore $w^d=\frac{dL}{dt}=I^2r;\;\; r=$ resistenza interna del generatore.

Resistenze:

in serie: $R = R_1 + R_2$; stessa I. in parallelo: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$; stessa d.d.p.

Se i conduttori si trovano in una configurazione di "induzione completa": $CR = \rho \varepsilon$

2 Magnetismo

Fenomeni magnetici stazionari nel vuoto:

Seconda legge di Laplace: $d\overrightarrow{F} = Id\overrightarrow{l} \wedge \overrightarrow{B}$

Forza di Lorentz:

$$\overrightarrow{F} = q \overrightarrow{v} \wedge \overrightarrow{B}$$

Se agisce anche un quampo elettrico: $\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \wedge \overrightarrow{B}$

$$\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \wedge \overrightarrow{B}$$

 $I = \frac{dq}{t}$ se ruota: $I = \frac{dq}{T}$; T=periodo $I = \frac{\sigma dS\omega}{2\pi}$

$$\overrightarrow{F} = I \oint d\overrightarrow{l} \wedge \overrightarrow{B}$$

$$\overrightarrow{M} = I \oint (\overrightarrow{r} \wedge (d\overrightarrow{l} \wedge \overrightarrow{B})) = \overrightarrow{m} \wedge \overrightarrow{B}$$

 $\overrightarrow{m} = ISn =$ momento magnetico della spira.

Energia potenziale:
$$U = -I\overrightarrow{B}\overrightarrow{S} = -\overrightarrow{m}\overrightarrow{B}$$

$$\overrightarrow{F} = \overrightarrow{grad}(\overrightarrow{m}\overrightarrow{B})$$

$$d\overrightarrow{B_0} = \frac{\mu_0}{4\pi} I \frac{d\overrightarrow{l} \wedge \Delta \overrightarrow{r}}{(\Delta \overrightarrow{r})^3}$$

Per circuiti filiformi:
$$\overrightarrow{B_0}(\overrightarrow{r}) = \frac{\mu_0}{4\pi} \oint_l I \frac{d \overrightarrow{l} \wedge \Delta \overrightarrow{r}}{(\Delta \overrightarrow{r})^3}$$

in generale per circuiti NON filiformi: $I=\int_S\overrightarrow{J}(\overrightarrow{r})d\overrightarrow{S}$

$$I = \int_{S} \overrightarrow{J}(\overrightarrow{r}) d\overrightarrow{S}$$

$$\overrightarrow{B_0}(\overrightarrow{r}) = \frac{\mu_0}{4\pi} \int_l \int_s (\overrightarrow{J}(\overrightarrow{r}) d\overrightarrow{S}) \frac{d\overrightarrow{l} \wedge \Delta \overrightarrow{r'}}{(\Delta \overrightarrow{r'})^3} = \frac{\mu_0}{4\pi} \int_\tau \frac{\overrightarrow{J}(\overrightarrow{r'}) \wedge \overrightarrow{r'}}{(\Delta \overrightarrow{r'})^3} d\tau$$

Teorema della circuitazione di Ampere:

$$\oint \overrightarrow{B_0} d\overrightarrow{l} = \mu_0 \sum I^{concatenate}$$

$$\oint \overrightarrow{B_0} d\overrightarrow{l} = \mu_0 \sum I^{concatenate}$$

$$dS = 2\pi R^2 \sin \vartheta d\vartheta = \text{corona circolare(?)}$$

Campi di induzione magnetica notevoli:

Filo rettilineo indefinito:

$$\overrightarrow{B}_0(r) = \frac{\mu_0}{2\pi r}I$$

$$\overrightarrow{B_0} = \frac{\mu_0 I}{2R}$$
 = al centro della spira;

Nastro conduttore rettilineo:

$$dI = I \frac{dx}{b}$$

$$dI = I \frac{dx}{b}$$

$$\overrightarrow{B_0} = \frac{\mu_0 I}{2\pi b} \ln(\frac{l+b}{l})$$

Solenoide:
$$d\overrightarrow{B_0} = (nd\xi) \frac{\mu_0 I R^2}{2(R^2 + (x - \xi)^2]^{(3/2)}}$$
n=numero di spire; $d\xi$ =spessore $\overrightarrow{B_0} = n\mu_0 I$

$$\overrightarrow{B_0} = n\mu_0 I$$

Campo generato a distanza r da una carica in moto con velocità v:

$$\overrightarrow{B} = \frac{\mu_0}{4\pi} q \frac{\overrightarrow{v} \wedge \overrightarrow{r}}{\overrightarrow{r}^3}$$

(in genere si applica la legge di Felici)

Forze tra fili rettilinei percorsi da corrente stazionaria:

$$\frac{d\overrightarrow{F_{21}}}{dl_2} = \frac{\mu_0 I_1 I_2}{2\pi r} = -\frac{dF_{12}}{dl_1}$$

Magnetismo nella materia:

$$\overrightarrow{J} = \overrightarrow{\nabla} \wedge (\frac{\overrightarrow{B}_{-\mu_0} \overrightarrow{M}}{\mu_0})$$

$$\overrightarrow{H} = \frac{\overrightarrow{B}_{-\mu_0}\overrightarrow{M}}{\mu_0}$$
 =vettore campo magnetico.

Teroema della circuitazione di Ampere relativo al campo magnetico: $\oint_{l} \overrightarrow{H} d\overrightarrow{l'} = \sum I_{i}$ nei problemi dotati di particolare simmatria consente di calcolare il campo magnetico \overrightarrow{H} generato dalle correnti sorgenti.

Condizioni di raccordo per \overrightarrow{B} e \overrightarrow{H} al passaggio da un materiale ad un altro:

$$B_{n1} = B_{n2}; \ \mu_1 H_{n1} = \mu_2 H_{n2}$$

$$\begin{split} \frac{B_{t1}}{\mu_1} &= \frac{B_{t2}}{\mu_2}; \ \ H_{t1} = H_{t2} \\ \frac{\tan \vartheta_1}{\tan \vartheta_2} &= \frac{\mu_1}{\mu_2} = \frac{\frac{H_{t1}}{H_{n1}}}{\frac{H_{t2}}{H_{n2}}} = \frac{\frac{B_{t1}}{B_{n1}}}{\frac{B_{t2}}{B_{n2}}} = \text{legge di rifrazione delle linee di forza da B ed H.} \\ \overrightarrow{H}_0 &= \frac{\overrightarrow{B}_0}{\mu_0} \\ \overrightarrow{B} &= \mu \overrightarrow{H} \end{split}$$

 μ =permeabilità magnetica= $\mu_0\mu_r$

 μ_0 e μ_r sono indipendenti da Bnei materiali paramagnetici e diamagnetici.

2.2.1 Sostanze Diamagnetiche:

suscettività magnetica: $\chi_m = \mu_r - 1$; χ_m è indipendente da T. χ_m rappresenta il fattore di proporzionalità tra H ed M.

$$\overrightarrow{M} = (\mu_r - 1)\overrightarrow{H} = \chi_m \overrightarrow{H}$$

$$\overrightarrow{B} = \mu \overrightarrow{H} = \mu_0 (1 + \chi_m) \overrightarrow{H}$$

2.2.2 Sostanze Paramagnetiche:

 χ_m varia al variare di T secondo la legge di Curie: $\chi_m = \frac{C\rho}{T}$ C=costante.

2.2.3 Sostanze Ferromagnetiche:

 $\begin{array}{l} \mu_d = \frac{dB}{dH} = & \text{permeabilità differenziale assoluta.} \\ \mu_{dr} = \frac{1}{\mu_0} \frac{dB}{dH} = & \text{permeabilità differenziale relativa.} \end{array}$

Esiste una temperatura T_c (temperatura di Curie) al di sopra della quale il materiale si comporta come un materiale paramagnetico, con suscettività variabile secondo la legge di Curie- Wiess: $\chi_m = \frac{C\rho}{T-T_c}$

2.2.4 Circuiti Magnetici:

Teorema della circuitazione di Ampere: $\oint \overrightarrow{H} \, d \, \overrightarrow{l} = N I$

Flusso uscente da una qualunque $\Sigma\colon \int_\Sigma \overrightarrow{B}\, d\, \overrightarrow{S} = 0$

$$\begin{split} \phi &= BS = cost.; \ B = \frac{\phi}{S} = \mu \overrightarrow{H} \\ NI &= \oint \overrightarrow{H} d\overrightarrow{l} = \oint \frac{\overrightarrow{B}}{\mu} d\overrightarrow{l} = \phi \int \frac{dl}{\mu S} \end{split}$$

Legge di Hopkinson:

$$I = R\phi$$

Forza magnetomotrice:

$$F = NI$$

Riluttanza:
$$R = \oint \frac{dl}{\mu S} = \frac{l}{\mu S}$$
 Se in serie:

$$R_s = \sum R_i$$

Se in parallelo:
$$\frac{1}{R_p} = \sum \frac{1}{R_i}$$

$$\phi = \frac{F}{R}$$

Circuiti magnetici	Circuiti elettrici
$div \overrightarrow{B} = 0$	$div \overrightarrow{J} = 0$
$\overrightarrow{B} = \mu \overrightarrow{H}$	$\overrightarrow{J} = \sigma \overrightarrow{E}$
$F = \oint \overrightarrow{H} d\overrightarrow{l}$	$f = \oint \overrightarrow{E} d \overrightarrow{l}$

2.2.5Elettromagneti:

è un circuito magnetico con ciclo di isteresi stretto.

Il vettore induzione magnetica ha nel traferro un valore \mathcal{B}_0 pari al valore B che esso ha internamente al nucleo.

$$B_0 = \frac{\phi}{S_0} = \frac{\phi}{S} = B$$

 $H_0 = \frac{B_0}{\mu_0} = \frac{B}{\mu_0}; \ H = \frac{B}{\mu_0 \mu_r} \quad \frac{H_0}{H} = \mu_r$

Se il nucleo dell'elettromagnete ha sezione costante: $NI = Hl + H_0d = Hl + \frac{B}{\mu_0}d$; l=lunghezza; d=sezione.

$$H_0 = \frac{B_0}{\mu_0} = \frac{B}{\mu_0}$$

$$B = \frac{\mu_0 NI}{d} - \frac{H l \mu_0}{d}$$

2.2.6 Magneti permanenti:

$$0 = \oint \overrightarrow{H} d \overrightarrow{l} = Hl + H_0 d; \quad B = B_0 = \mu_0 H_0 H = -H_0 \frac{d}{l} = -\frac{B_0}{\mu_0} \frac{d}{l} = -\frac{B}{\mu_0} = \frac{d}{l}$$

2.3 Campi elettrici e magnetici variabili nel tempo:

Legge di Faraday-Neumann:

$$f_i = -\frac{d\phi(B)}{dt}$$

 $f_i = \oint_l \overrightarrow{E}_i d\overrightarrow{l}$; E_i =campo elettromagnetico indotto.

$$\phi(\overrightarrow{B}) = \int \overrightarrow{B} d\overrightarrow{S}$$

Legge di Lenz:

Il verso della forza elettromotrice indotta è tale da opporsi alla variazione di flusso che la genera.

Fenomeno dell'autoinduzione:

Consideriamo un qualunque circuito elettrico in condizioni quasi stazionarie. La corrente I che circola nel circuito genera un campo d'induzione magnetica $\overrightarrow{B}(t)$ con flusso concatenato al circuito non nullo. Se Ivaria varia anche B e quindi anche $\phi(B)$, per Faraday-Neumann si genera una forza elettromotrice autoindotta.

$$\phi(\overrightarrow{B}) = LI$$

L=costante di autoinduzione=INDUTTANZA,il suo valore è determinato dalla geometria del circuito e dal materiale circostante.

Forza autoindotta:

$$f_a = -\frac{d\phi_a}{dt} = -L\frac{dI}{dt}$$

Legge di Felici:

$$Q = \frac{1}{R} [\phi_i - \phi_f] = \frac{NSB}{R}$$

Coefficienti di autoinduzione notevoli: 2.3.1

Solenoide nel vuoto:

$$L = \frac{\phi(\vec{B})}{l} = \mu_0 \frac{N^2 S}{l} = \frac{\mu_0 N^2 \pi R^2}{l}$$

Solenoide nel dielettrico:

$$L = \mu_0 \mu_r \frac{N^2 \pi R^2}{l}$$

Linea elettrica bifilare:
$$\phi_s(B) = \int_a^{D-a} \frac{\mu_0 I}{2\pi} \left(\frac{1}{x} + \frac{1}{D-x}\right) h dx = \frac{\mu_0 I h}{\pi} \ln\left(\frac{D}{a}\right)$$

$$L = \frac{\mu_0 h}{\pi} \ln\left(\frac{D}{a}\right)$$

$$L = \frac{\mu_0 h}{\pi} \ln(\frac{D}{a})$$

D=distanza tra i due fili; a=raggio dei fili; h=lunghezza fili;

x=distanza tra il filo conduttore ed il filo dove calcolo L.

Cavo coassiale:

Cavo coassiale:

$$\phi_S(B) = \int_a^b \frac{\mu_0 I}{2\pi r} h dr = \frac{\mu_0 I h}{2\pi} \ln(\frac{b}{a})$$

$$L = \frac{\mu_0 h}{2\pi} \ln(\frac{b}{a})$$

$$L = \frac{\mu_0 h}{2\pi} \ln(\frac{b}{a})$$

h=lunghezza del cavo; b=raggio del cavo; a=raggio del filo conduttore

Mutua induzione:

Consideriamo due circuiti affiancati C_1 e C_2 : $\phi_2(\overrightarrow{B}_1) = M_{21}I_1; \ M_{21} = \frac{\phi_2(B_1)}{I_1}$ M_{21} =coefficiente di mutua induzione.

$$\phi_2(\overrightarrow{B}_1) = M_{21}I_1; \ M_{21} = \frac{\phi_2(B_1)}{I_1}$$

Se $I_1(t)$ varia nel tempo,
in C_2 si genera una forza elettromotrice indotta:

$$f_{2m} = -\frac{d\phi_2(\overrightarrow{B}_1)}{dt} = -M_{21}\frac{dI_1}{dt}$$

analogamente:
$$\phi_1(\overrightarrow{B}_2) = M_{12}I_2; \quad M_{12} = \frac{\phi_1(B_2)}{I_2}$$

$$M_{12} = M_{21}$$

Spira circolare:

$$M = \frac{\mu \pi r^2}{2R}$$

Tubo cilindrico di cartone con due avvolgimenti di filo conduttore N_1 e

$$N_2$$
:

$$M = \frac{\mu N_1 N_2 S}{l}$$

2.3.2Circuiti accopiati:

Consideriamo due circuiti RL affiancati di cui uno solo ha il generatore:

$$R_{1}I_{1} = f(t) - L_{1}\frac{dI_{1}}{dt} - M\frac{dI_{2}}{dt}$$

$$R_{2}I_{2} = -L_{2}\frac{dI_{2}}{dt} - M\frac{dI_{1}}{dt}$$

$$R_2 I_2 = -L_2 \frac{dI_2}{dt} - M \frac{dI_1}{dt}$$

forza elettromotrice autoindotta: $-L_1 \frac{dI_1}{dt}$

forza elettromotrice di mutua induzione: $-M\frac{dI_2}{dt}$

analogamente per il secondo circuito.

Analisi energetica di un circuito RL:

$$f = RI + L\frac{dI}{dt}$$

$$dQ = Idt$$

$$fIdt = RI^2dt + LIdI$$

fldt=energia erogata dal generatore; RI^2 =energia dissipata per effetto Jou-

La presenza dell'induttanza comporta l'erogazione da parte del generatore, dell'energia aggiuntiva:

$$dU_L = LIdI$$

 $U_L = \int_0^I LIdI = \frac{1}{2}LI^2$ =energia posseduta da un'induttanza percorsa da cor-

Potenza: W = fI

$$U_c = \frac{1}{2} \frac{Q^2}{C}$$

$$L\frac{dI}{dt} = NS\frac{dB}{dt}$$

$$dU_L = NS \frac{dB}{dt}$$

Incremento della densità d'energiacorrispondente all'incremento dB:

$$\frac{dU_L}{Sl} = du_L = HdB$$

$$du_L = \frac{BdB}{u}; \quad u_M = u_L(B) = \int_0^B u_L = \frac{1}{2}\mu H^2$$

$$Q = fC$$

Se consideriamo due circuiti accoppiati RL(entrambi con que eratore):

$$f_1 - L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_2}{dt} = R_1 I_1$$

$$f_2 - L_2 \frac{dI_2}{dt} - M_{21} \frac{dI_1}{dt} = R_2 I_2$$

facendo i conti:

$$dU_{M} = d(\frac{1}{2}L_{1}I^{2}_{1} + L_{2}I^{2}_{2} + M_{12}I_{1}I^{2})$$

$$U_{M} = \frac{1}{2}L_{1}I^{2}_{1} + \frac{1}{2}L_{2}I^{2}_{2} + M_{12}I_{1}I_{2}$$

Forza magnetica applicata ad una sbarretta(filo): $F_M = -\frac{B^2 l^2 v}{R} = iBl$

$$F_M = -\frac{B^2 l^2 v}{B} = iBl$$

2.4 Corrente alternata:

Potenziale ai capi di R:

$$\Delta V = IR$$

Potenziale ai capi di L:

$$\Delta V = -L \frac{dI}{dt}$$

Potenziale ai capi di C:

$$\Delta V = \frac{Q}{C} = \frac{1}{C} \int I dt$$

$$f = F \sin \omega t$$

$$I = I_0 \sin(\omega t + \varphi)$$

$$\frac{dI}{dt} = \omega I_0 \cos(\omega t + \varphi)$$

$$\frac{dI}{dt} = \omega I_0 \cos(\omega t + \varphi)$$

$$\int I dt = -\frac{I_0}{\omega} \cos(\omega t + \varphi)$$

Lavoro:

$$dL = Vdq = VIdt$$

Potenza:

$$W = \frac{dL}{dt} = VI$$

$$f = Fe^{\alpha t}; \quad \alpha = j\omega$$

$$I = I_0 e^{j\omega t}$$

$$\frac{dI}{dt} = j\omega I$$

$$\int I dt = -\frac{j}{\omega} I$$

$$V_L(t) = j\omega LI(t)$$

$$V_C(t) = -\frac{j}{\omega C}I(t)$$

$$V_R(t) = RI(t)$$

$$V = ZI$$
; Z=impedenza.

$$Z_L = j\omega L$$

$$Z_C = -\frac{j}{\omega C}$$

$$Z_R = R$$

L'impedenza di più componenti in seire:

$$Z = Z_1 + Z_2 + \dots$$

L'impedenza di più componenti in parallelo:

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots$$

$$I_{eff} = \frac{I_0}{\sqrt{2}}$$

Fenomeno della risonanza(RLC in serie):

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \omega_0; \ Z=R; \ I_0 = \frac{F_0}{R}; \ \varphi_1 = 0$$
fottore di merito:
$$\frac{1}{Q} = \frac{\Delta \omega}{\omega} = R\sqrt{\frac{C}{L}}$$

Antirisonante(RLCin parallelo):

Potenza assorbita:

istantanea:

$$W(t) = V(t)I(t) = I^2{}_0Z\cos\omega(t)\cos(\omega t + \varphi) = I^2{}_0Z\cos\varphi\cos^2\omega t - \frac{1}{2}I^2{}_0Z\sin\varphi\sin(2\omega t)$$
totale:

$$W = \frac{I^2 {_0}R}{2} = \frac{I^2 {_0}Z}{2}\cos\varphi = \frac{I_0V_0}{2}\cos\varphi = I_{eff}V_{eff}\cos\varphi$$
 apparente:

$$P_a = I_{eff} V_{eff}$$

3 Ottica:

Interazione tra radiazione e materia: 3.1

Legge di riflessione:

$$\vartheta_i = \vartheta_i'$$

Legge diSnell:

$$n_1 \sin \vartheta_i = n_2 \sin \vartheta_r$$

L'onda riflessa e quella rifratta devono avere la stessa frequenza di quella incidente.

Angolo limite(riflessione totale):

$$n_1 > n_2$$

$$\sin \vartheta_{iL} = \frac{n_2}{n_1}$$

Angolo di Brewster:

$$\vartheta_{iB} = \arctan(\frac{n_2}{n_1})$$

Indice di rifrazione relativo:

$$n_{12} = \frac{n_2}{n_1} = \frac{\sin \vartheta_i}{\sin \vartheta_r}$$

3.1.1Relazioni di Fresnel:

per polarizzazione normale al piano di incidenza:

$$\frac{E'_{0i}(\perp)}{E_{0i}(\perp)} = -\frac{\sin(\vartheta_i - \vartheta_r)}{\sin(\vartheta_i + \vartheta_i)}$$

$$\frac{E_{0i}(\perp)}{E_{0r}(\perp)} = \frac{2\sin\theta_r\cos\theta_i}{\sin\theta_r\cos\theta_i}$$

per polarizzazione normale al piano di incidenza: $\frac{E'_{0i}(\bot)}{E_{0i}(\bot)} = -\frac{\sin(\vartheta_i - \vartheta_r)}{\sin(\vartheta_i + \vartheta_r)}$ $\frac{E_{0r}(\bot)}{E_{0i}(\bot)} = \frac{2\sin\vartheta_r\cos\vartheta_i)}{\sin(\vartheta_i + \vartheta_r)}$ per polarizzazione parallela al piano di incidenza: $\frac{E'_{0i}(||)}{E_{0i}(||)} = \frac{\frac{n_2}{\mu_2}\cos\vartheta_i - \frac{n_1}{\mu_1}\cos\vartheta_r}{\frac{n_2}{\mu_2}\cos\vartheta_i + \frac{n_1}{\mu_1}\cos\vartheta_r}$ $\frac{E_{0r}(||)}{E_{0i}(||)} = \frac{2\frac{n_1}{\mu_1}\cos\vartheta_i}{\frac{n_2}{\mu_2}\cos\vartheta_i + \frac{n_1}{\mu_1}\cos\vartheta_r}$

$$\frac{E'_{0i}(\parallel)}{E_{0i}(\parallel)} = \frac{\frac{n_2}{\mu_2}\cos\vartheta_i - \frac{n_1}{\mu_1}\cos\vartheta_r}{\frac{n_2}{n_2}\cos\vartheta_i + \frac{n_1}{n_1}\cos\vartheta_r}$$

$$\frac{E_{0r}(\parallel)}{E_{0i}(\parallel)} = \frac{2\frac{n_1}{\mu_1}\cos\vartheta_i}{\frac{n_2}{\mu_2}\cos\vartheta_i + \frac{n_1}{\mu_1}\cos\vartheta_r}$$

Se
$$\vartheta_i = 0$$
 , $E_i \perp$ al piano,: $E'_{0i} = E_0 \frac{n_1 - n_2}{n_1 + n_2}$ $E_{0r} = E_0 \frac{2n_1}{n_1 + n_2}$

$$E'_{0i} = E_0 \frac{n_1 - n_2}{n_1 + n_2}$$

$$E_{0r} = E_0 \frac{2n_1}{n_1 + n_2}$$

Intensità media di un'onda sinusoidale:

$$I = \frac{E^2_0}{2} \sqrt{\frac{\varepsilon}{\mu}} \simeq \frac{E^2_0}{2Z}$$

Riflettanza:

$$\frac{I_i'}{I_i} = \left(\frac{E_{0i}'}{E_{0i}}\right)^2 = r(\vartheta_i, \frac{n_2}{n_1})$$

Trasmittenza:

$$\frac{I_r}{I_i} = \frac{E^2_{0r}n_2}{E^2_{0i}n_1} = t(\vartheta_i, \frac{n_2}{n_1})$$

Interferenza tra due onde coerenti:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta$$

 Δ =sfasamento.

$$\Delta = k_2 r_2 - k_1 r_1 = 2\pi \left(\frac{r_2}{\lambda_2} - \frac{r_1}{\lambda_1}\right) = \frac{2\pi \partial}{c} (n_2 r_2 - n_1 r_1) = \frac{2\pi \delta}{\lambda_0}$$

3.1.2 Diffrazione di Frauhnofer:

una fenditura rettilinea:

$$I \propto \frac{\sin^2 \alpha}{\alpha^2}$$
$$\alpha = \frac{1}{2}kd\sin \theta$$

Se ci sono due sorgenti i cui raggi si intersecano durante il cammino prima dello schermo e formano un angolo $\Delta \vartheta$:

 $\Delta \vartheta = \frac{\lambda}{d}$ =potere risolutivo angolare o potere separatorio= ϑ_{min}

una fenditura circolare:

$$2\Delta\vartheta = 1.22\frac{2\lambda}{d}$$

doppia fenditura:

$$\Delta = \frac{2\pi D \sin \vartheta}{\lambda}$$

$$I = 2I_c(1 + \cos \Delta)$$

reticolo:

Passo del reticolo: $D = \frac{b}{N}$

b=larghezza complessiva del reticolo; N=numero delle fenditure.

Sfasamento rispetto alla prima onda:

$$\Delta = \frac{\pi \sin \vartheta}{\lambda} \frac{b}{N} = \frac{\pi D}{\lambda} \sin \theta$$

$$I = k \frac{\sin^2 N \Delta}{\sin^2 \Delta}$$
Massimi principali:

$$I = k \frac{\sin^2 N \Delta}{\sin^2 \Delta}$$

$$\sin \theta = \frac{n\lambda}{D}$$

Minimi principali:
$$\sin \theta = \frac{(nN+1)\lambda}{ND}$$

Potere risolutivo:

$$R = \frac{\lambda}{d\lambda} = Nn$$

 $R = \frac{\lambda}{d\lambda} = Nn$ Rapporto di intensità:

$$\frac{I_s}{I_p} = \frac{1}{N^2}$$

 $I_s = \frac{1}{I_p}$ $I_s = \max$ secondario; $I_p = \max$ principale.

Semilarghezza dei max principali: $d\theta = \frac{\lambda}{ND\cos\theta}$ Dispersione angolare:

$$d\theta = \frac{\lambda}{ND\cos\theta}$$

$$\frac{d\theta}{d\lambda} = \frac{n}{D\cos\theta}$$

$$\phi = kl - k_0 l; \quad k = \frac{2\pi}{\lambda_0}$$

Ottica geometrica: 3.2

3.2.1 Riflessione:

Specchio sferico:

$$\frac{1}{p} - \frac{1}{q} = -\frac{2}{R} = -\frac{1}{f}$$

 $I = \frac{y'}{y} = -\frac{q}{p}$

3.2.2 Rifrazione:

Diottro sferico:

Diottro siefico
$$\frac{n}{p} + \frac{n'}{q} = \frac{(n'-n)}{R}$$

$$\frac{f_1}{p} + \frac{f_2}{q} = 1$$

$$f_1 = \frac{n'}{(n'-n)}R$$

$$f_2 = \frac{n'}{(n'-n)}R$$

$$I = \frac{nq}{n'p}$$

Lente sottile:
$$\frac{n_s}{p} + \frac{n_d}{q} = \left(\frac{n-n_s}{R_1}\right) + \left(\frac{n_d-n}{R_2}\right)$$

Lente sottile in aria:
$$\frac{\frac{1}{p} + \frac{1}{q} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})}{\frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})}$$

$$I = \frac{q}{p}$$