Algebra 2 2007/2008

Notation: A C B means A is a subset of B, possibly equal to B.

1. Revision

All rings are commutative rings with unity.
1.1. Let f: A — B be aring homomorphism.

Theorem on ring homomorphisms. The kernel I of f is an ideal of A, the image
C of f isasubring of B. The quotient ring A/I isisomorphicto C.

Proof. Considerthe map g: A/I — C, a+1 — f(a). Itis well defined: a+I =a'+1
implies a — a’ € I implies f(a) = f(a’).

The element a + I belongs to the kernel of g iff g(a+ 1) = f(a) =0, ie. a €1,
i.e. a+1 =1 is the zero element of A/I. Thus, ker(g) = 0.

The image of g is g(A/I)={f(a):a € A} =C.

Thus, g is an isomorphism. The inverse morphism to g is givenby f(a) — a+I.

Correspondence theorem. Let I be an ideal of a ring A. Then there is a bijection
between the set of all ideals J of A suchthat I C J and the set of all ideals of A/I:

{J:Tanidealof A, I C J} — {K:K anidealof A/I}
J — J/I

Proof. Denote by h the morphism h: A — A/I, a — a+1, itsimage is A/I andits
kernel is 1.

For an ideal J of A, I C J, denote by h|;:J — A/I,j +— j+ I the restriction
of h to J. Its kernel is I and so by the previous theorem its image is isomorphic to
J/I. The latter is an ideal of A/I.

For an ideal K of A/I define K’ = h~!(K) of A. Then K’ is an ideal of A,
I CK'

Now we have two maps, J — J/I and K +— h~Y(K). They are inverse to
each other, ie. h~'(J/I) = J and h~'(K)/I = K. Thus, there is a one-to-one
correspondence between the ideals.
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1.2. The intersection of ideals of A is an ideal of A. Given a subset S of A, one
can speak about the minimal ideal of A which contains .S. This ideal is equal to

{a1s1+ -~ +amsm 1 a;, € A;s; € S;m > 1}.

Often it is called the ideal generated by S'.

Let I, J beideals of a ring A.

Their sum I + J is the minimal ideal of A which contains both I and J, more
explicitly

I+J={i+j:iel,jeJ}.
Certainly, I +(J + K)= (I + J)+ K. Similarly one defines the sum of several ideals

S 1.
Their product 7.J is the minimal ideal which contains all ij : ¢ € I,j € J, more
explicitly

Ii={ijj1+  +ipjn:n =iy €I1,j, € J}.
The product is associative:
UK =I(JK)
and distributive:
I+ J)K=IK+JK.
Similarly one defines the product of several ideals I; ... I,,.

Note that (I + J;)({ +J3) is the minimal ideal which contains products (¢1 + j1)(i2 +
72) = (@190 + 1271 +21J2) + J1J2, soitis contained in I + J;J;:

T+J)U + ) C T+ JJy,

but the inverse inclusion does not hold in general.
For an element a of A the principal ideal generated by a is
(a)=aA={ab:bec A}

In particular, (0) = {0} is the smallest ideal of A and (1) = A is the largest ideal of
A. Unless A = {0}, these are two distinct ideals of A.
For several elements ay, ...,a, of A the ideal generated by the a; is denoted

(g, ...,an)=a1A+ - +a,A={aby + ---+a,b, : b € A}.

1.3. Aring A is afield if it contains a non-zero element and every non-zero element
of A isinvertible in A.

Lemma. A non-zero ring is a field iff it has exactly two different ideals, (0) and (1)
(they are called improper ideals of A).



2007/2008 3

Proof. If I is a non-zero ideal of a field I, then I contains a non-zero element a.
Therefore it contains aa~! = 1 and therefore it contains 1b = b for every b in F; so
I=F.

Conversely, if a non-zero ring has only two distinct ideals then it is a field: for
every nonzero element aA must be equal to (1), hence a multiple of a is 1 and a is
invertible.

An ideal I of aring A is called maximal if / # A and every ideal J such that
I C J C A either coincides with A or with 7. By 1.1 this equivalent to: the quotient
ring A/I has no proper ideals. By the previous lemma this is equivalent to A/ is a
field. So we proved

Lemma. I isamaximal ideal of A iff A/I is a field.

1.4. Aring A is an integral domain if A #0 and for every a,b € A ab =0 implies
a=0orb=0.

Example: every field is an integral domain: ab =0 and a # 0 implies b =a"'ab =
0. Z is an integral domain. More generally, every non-zero subring of an integral
domain is an integral domain.

If A is an integral domain, one can form the field of fractions F' of A as

{a/b:aec A;bec A\ {0}}.

By definition a/b = ¢/d iff ad = bc.

This is an equivalence relation: if a/b = ¢/d and ¢/d = e/ f then ad = bc and
cf =ed so adf =bcf =bed, d(af —be) =0. As d is not zero, af = be.

Define two ring operations a/b+ c¢/d = (ad + bc)/(bd) and (a/b)(c/d) = (ac)/(bd).
The zero of F' is 0/1 = 0/a for any non-zero a. Every nonzero element a/b of F is
invertible: if a/b#0 then (a/b)~! = b/a. Thus F is a field. The ring homomorphism
A — F, a+— a/l is injective: a/1 =0/1 implies a = 0. Thus A can be identified
with the subring A/1 of F. Then a/b can be identified with ab~! giving the meaning
of fraction to the symbol a/b.

Thus, every integral domain is a non-zero subring of a field, and the latter is an
integral domain. So the class of integral domains coincides with the class of non-zero
subrings of fields.

1.5. Anideal I of aring A is called prime if I # A and for every a,b € A the
inclusion ab € I implies that either a € [ or b € 1.
Example: every field has a prime ideal: (0).

Lemma. I isaprimeideal of A iff A/I isan integral domain.

Proof. Let I be a prime ideal of A. Let (a+I)(b+1)=0+1, then ab € I. So at
least one of a, b isin I which means that either a+ 1 =0+1 or b+ 1 =0+ I. Thus,
A/I is an integral domain.
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Conversely, let A/I be an integral domain. If ab € I then (a+1)(b+1)=1=0+1,
hence either a+ [ =1 andso a € I, or b+ =1 andso b € I. Thus, I is a prime
ideal of A.

Example: for a prime number p the ideal pZ is a prime ideal of Z. The zero ideal
(0) is a prime ideal of Z.

Corollary. Every maximal ideal is prime.
Proof. Every field is an integral domain.

Remark. In general, not every prime ideal is maximal. For instance, (0) is a prime
ideal of Z which is not maximal.

1.6. Forrings A; define their product A; x --- x A,, as the set theoretical product
endowed with the componentwise addition and multiplication.

Chinese Remainder Theorem. Let Iy, ..., I, beidealsof A suchthat I; +; = A
for every ¢ = j. Then

A/(Ilfn): H A/Ik, a+I1...In+—>(a+Ik)1<k<n.
1<k<n
Proof. Firstlet n =2. Then
LLchnhL=>nN IZ)A =L Nnh)y L+ DhycUhNnh)+(I1NNL), C L1
So I1I; = I} N I,. The kernel of the homomorphism
A— H A/Ik, a— (a+1,a+ 1)
1<k<2

is It NI, = I 1. Itis surjective: since I + I, = A, there are elements = € I,y € I,
such that x + y = 1 and hence bx + ay = a+ (b — a)xr € a + I} and similarly
br+ay € b+ 1.

Now proceed by induction on n. Denote J; = I, J, = I,...I,, so JiJp =
Iy...I,. Since I} + I = A forall k> 1, we deduce using 1.2 that

J1+J2=Il+12...fnD(Il+12)...(11+ITL)=A,

so Ji+J, = A. Now in the same way as in the previous paragraph one gets A/(J;.J,) ~
[1i<k<2 A/ Jx- By the induction hypothesis A/J> >~ [, <, A/Ix. Thus,

A) .. I,) ~ H A/l

1<k<n

Example. Let p; be distinct primes and r; positive integers. Then

Z/(py"...pp ) =~ HZ/p?Z.
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2. Modulesover rings

2.1. Let A be aring. An abelian group M is called an A-module if there is a
multiplication A x M — M such that a(z +y) = ax + ay, (a + b)x = ax + bx, a(bzx) =
(ab)z, 1z = .

Examples. Every abelian group is a Z-module, so the class of abelian groups coincide
with the class of Z-modules.
Every vector space over a field F' is an F'-module.

22. A map f:M — N is called a homomorphism of A-modules if f(x +y) =
f@) + f(y) forevery x,y € M and f(azx) = af(x) forevery a € A, x € M. A ho-
momorphism f of A-modules is called an isomorphism of A-modules, or alternatively
an A-isomorphism, if f is bijective.

2.3. A subgroup N of an A-module M is called an A-submodule of M if an € N
forevery a € A,n € N.

Example: Submodules of the A-module A are ideals of A.

For an A-module M and its A-submodule N define the quotient module M /N
as the quotient set of cosets m + N with the natural addition and multiplication by
elements of A.

Similarly to 1.1 one proves: If M, N are A-modules and f: M — N is an
A-module homomorphism, then the kernel of f is a submodule of M and the image
of f is a submodule of N, and M/ ker(f) is A-isomorphic to im(f).

Similarly to 1.1 submodules of the quotient module M /N are in 1-1 correspondence
with submodules of M containing N.

In particular, if f: M — N isan A-module homomorphism, and K is a submodule
of ker(f), then f induces an A-module homomorphism ¢g: M/K — N, m+ K

f(m).

2.4. For A-modules M, N the intersection M N N is an A-module. So if M, N
are contained in a larger module L, one can speak about the minimal A-module which
contains a fixed set of elements related to M and N.

Thenthe M + N = {m+n:m € M,n € N} is the minimal A-module which
contains all all elements of M and N.

Define the direct sum of modules as the set theoretical product with the natural
addition and multiplication by elements of A.

Lemma. Let N, K be A-submodulesof an A-module M. Amap f: N K — N+K,
f((n, k)) = n+k isasurjective A-module homomorpism whose kernel is A-isomorphic
to the submodule NN K. Therefore,if NNK = {0}, N& K isisomorphicto N+ K.
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Proof. Clearly f is surjective. Its kernel is {(n,k) : n+k =0}. Then n = —k €
NNK. Amap {(n,k):n+k=0} - NNK, (n,—n)+— n isabijection.

2.5. The submodule M generated by elements z; is the minimal submodule which
contains all of them, it consists of finite A-linear combinations of x;; elements z; € M
are called generators of M.

The minimal number of generators (if it exists) of M is called the rank of M .

M is said to be of finite type if it has a finite number of generators.

An A-module M is called free if M has generators x; such that > a;x; = 0
implies a; = 0 for all 7. The set of x; is called then a basis of M.

2.6. Lemma.

(1) The module A™ = ® <<, A is free of rank n.

(2) Let M be an A-module of finite type and let xy, ...,x, be generatorsof M.
Define a homomorphism

f:An_>M7 (ala"'van)’_)zaixi-

It is surjective. If N is the kernel of f, then M is isomorphic to the quotient module
(A)"™/N. Thus, every A-module of finite type is isomorphic to a quotient of a free
module.

(3) Every free module of finite rank n is isomorphic to A™.

Proof. (1), (2) follow from the definitions. If M is free and the number of generators
is finite equal to n, then the homomorphism (A)" — M is surjective and injective.

Elements of N serve as relations for generators of M.

As a corollary we deduce that the direct sum of free modules is free: A™ @ A™ ~
A?’L+'I7L .

Examples. 1. From linear algebra it is known that every module of finite rank over a
field has a basis and is free.

2. Let A=7 and M = Z/nZ for n > 1. Then M has rank 1 and is not a free
A-module, since if M ~ (Z)! then M would have been infinite.

3. Polylinear constructions

3.1. Thesetof A-module homomorphismsfroman A-module M to N isan A-module:
(af)(m)=a- f(m), (f +g)m) = f(m)+ g(m). Itis denoted Hom 4 (M, N).

Examples—Exercises. Hom 4(0, N) = Hom4(M,0) =0. Hom4(A, N) ~ N,
Hom4 (M, N1 & N>) ~ Homy (M, Ni) @ Hom 4 (M, N»).
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3.2. Amap f:M x N — R iscalled A-bilinear if for all m, mi,my,n,ni,no,a

f(m7 ny+ n2) = f(m7 nl) + f(m7 n2)7 f(m7 an) = (lf(m, n)
f(my+my,n) = f(my,n) + f(ma,n),  flam,n) =af(m,n).

So for every m the map N — R,n — f(m,n) is a homomorphism of A-modules
and for every n the map M — R, m +— f(m,n) is a homomorphism of A-modules.
Note that an A-bilinear map f does not induce a homomorphism of A-modules
M @ N — R, since f(a(m,n)) = f(am,an) = a®>f(m,n) is not equal to af(m,n)
in general. Denote the set of all A-bilinear maps f: M x N — R by Bil4(M, N; R).
The latter is an A-module with respect to the sum of maps and multiplication of a map
by an element of A.
Similarly one can define A-n-linear maps.

Example. Let A = F be a field, and let M be an F'-vector space of dimension
dy and N be an F'-vector space of dimension dy. Fix a basis {m;} in M and a
basis {n;} in N. Let C be a matrix of order d; x dp with entries in F'. Define
amap f:M x N — F, f(m,n) = mCn° where m is written as a row and n°
as a column. The map f is an F'-bilinear map. Conversely, every F'-bilinear map
M x N — F is determined by its values on {(m;,n;) : 1 < i < dj,1 < j <
da}: fOQCaimi, > bjng) =" a;bj f(m;,n;). Now form a matrix C' whose entries
are f(m;,n;). Thus, there is a one-to-one correspondence between bilinear maps
M x N — F and matrices of order d; X d, with entries in F'.

3.3. To study A-bilinear maps from M x N to R it is useful to introduce another
A-module T' and a bilinear map g: M x N — T such that bilinear maps f: M x N —
R are in one-to-one correspondence with homomorphisms of A-modules 77 — R
via g. In other words, we define an isomorphism of A-modules Bil 4(M, N; R) ~
Homu (T, R); T will be the same for all R.

To define T first denote by L the free A-module with a basis consisting of elements
lm,n indexed by elements of M x IN. So an arbitrary element of L is a finite sum
> il n; With a; € A, m; € M and n; € N. Let K be the A-submodule of L
generated by elements

lm1+m2,n - lml,n - lm2,n7 lm,n1+n2 - lm,nl - lm,nza
lam,n - alm,n7 lm,an - alm,n
(forall ae A, me M and n € N).
Denote T'= L/K. The image of [, , in T, ie. the coset l,, , + K is usually

denoted by m ® n.
Since L is generated by [y, ,,, the module 7' is generated by m ® n, i.e.

T:{Zaimi@Jni:ai EA,’I’)’Li € M,n; EN}
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These satisfy relations:

Mmi+m)®n=m; @n+myn, (am)n=almn),

mMmi+m)=men +meny, me (an)=alm n)

(foral a € A, me€ M and n € N).

The module T is denote M ® 4 N and is called the tensor product of M and N
over A. In particular, we have n ® 0=0(n ® 1) = 0.

Now defineamap g: M x N — M ®4 N by (m,n) — m®n. Itisan A-bilinear
map.

3.4. Theorem. For an A-bilinear map f: M x N — R define f/"M @4 N — R
as f'O-a;m; @ny) => a;f(mg,n;). Itis awell defined map and it is a homomor-
phism of A-modules. The correspondence f — f’ is an isomorphism of A-modules
Bil4(M, N; R) and Homa(M ®4 N, R).

Proof. Extend f to a homomorphism L — R by l,,, — f(m,n). Since f is
bilinear, all generators of K are mapped to zero, so we get f' = a(f): M @4 N — R,
'O am; ®n;)=> a;f(m;,n;). The map « is a homomorphism of A-modules.

Conversely, if f': M ® 4 N — R is a homomorphism of A-modules, then define
f=B(f)Mx N — R as f(m,n)=f"og(m,n). Then f is an A-bilinear map.

Now a0 B(f") = a(f’ o g) and so o B(f)(3_ aim; @ ng) =) a;f' o g(my,ng) =
f'(Q_aim; ® ng). We also have 3o a(f)(m,n) = a(f) o g(m,n) = a(f)(m @ n) =
f(m7 n)‘

Thus, o and [ are isomorphisms.

So using the tensor product one can reduce the study of bilinear maps to the study
of linear maps.

Example. Let A = F be afield. Let M, N be two F-vector spaces of dimensions
d; and dp. In accordance with the previous theorem the vector space of linear maps
M ® N — F' is isomorphic to the vector space of bilinear maps M xrp N — F. In
accordance with Example in 3.2 the dimension of the space Bil(M, N; F) is ddy; if
mi, ...,mgq, 18 a basis of M and ny, ...,ng, is a basis of IV, then every bilinear
map f: M x N — F' is determined by its values on {(m;,n;)}.

Therefore, the dimension of the vector space Homp(M ®pr N, F) is didy. It
is known from linear algebra that the dimension of a vector space V' equals to the
dimension of Homg(V, F). So the dimension of M ® N is dd,; the F'-vector space
M ®p N hasabasis m; @nj;, 1 <i<d,1<j<do.

Note that in the particular case of M = N the space N @r N has dimension
equal to the square of the dimension of N. In physics, NV over F' = C represents the
state vector of a particle, and N ®¢ N represents the state vectors of two independent
particles of the same kind.
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3.5. First properties of the tensor product:

Lemma. (i) M ®q A~M,
(1) M ®a N~N®yM,
(117) (M ®@a N)®a R>~M®4 (N ®a R),
() MIUWPR) (MR s NS (M ®4R),
(v) Homa(M®aN, K)~ Homs(M,Hom4(N, K)) ~ Hom4(/N,Hom 4 (M, K)).

Proof. To prove (i) we first define an A-homomorphism f:L — M, l,, ., — am
where L is a free A-module with a basis [, ., m € M,a € A. Then K (which
is the submodule of L defined as in 3.3) is in the kernel of f. So f induces an
A-homomorphism ¢g:M ®4 A = L/K — M, m ® a — am. Define h: M —
M®s A,m— m® 1. Then g and h are inverse to each other.

To prove (ii) use an A-homomorphism f:M @ N - N M, m®@n — n®@m
which corresponds to a map [, ,, — n ® m and an A-homomorphism g: N @ M —
M®N,n®m—m®mn. f and g are inverse to each other.

To prove (iil)use M@ (N 1r) — (MRIN)QT,(MAIN)RXr—menQr).

For (iviuse m®@ (n,r) —m (m@n,mr), (m n,mpy @r) — m; ® (n,0) +
mo ® (0, 7).

For (v)use h € Hom4(M® o N, K) — h' € Hom 4(M,Hom 4 (N, K)), h/(m)(n) =
h(m®n) and h' € Hom(M,Hom (N, K)) — h € Homa(M @4 N, K), h(m®n) =
A (m)(n).

3.6. Examples.
(1) A" @4 A™ = A™™,
(2) Q®z Z/mZ = 0. Indeed,

p/q® (n+mZ)=m(p/qgm) @ (n+mZ) =p/(gm) @ (mn+mZ)=p/(gm) @0 =0.

Note that Z/mZ is not a free Z-module.

(3) Q ®2Q = Q. Indeed, define f:m®n — mn. Itissurjective. If > m; ®@n; —
0, then Y m;n; = 0. Let g be a least common multiple of denominators of n; and
then n; = r;/q for integer r;. We get > - m; ®n; = m;r; ® (1/q) =0. Thus f is
an isomorphism.

3.7. The module M° =Hom 4(M, A) is called the A-dual module to M.
We have a bilinear pairing M x M° — A, (m,f) — f(m) which induces a
homomorphism M ®4 M° — A and a homomorphism M — M°°.

Examples. (1) If A = F isafield and M is a finite dimensional vector space over
F with abasis e;, then define p; € M° as p;(> aje;) = a;. Then p; form a basis of
M?°. So M and M° are of the same dimension. The homomorphism M — M°° is
injective and surjective in this case.

2)If A=Z and M =Z/nZ then M° =0.
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We have a homomorphism
Hom (M, N) — Homa(N®, M®), [ (g go ).

In the case of vector spaces the latter is an isomorphism.
As a corollary of 3.5, (v) we get (substitute K = A)

(M ®4 N)° =Homa(M ®4 N, A) ~ Homs(M,Homy4 (N, A)) = Hom (M, N°).
In the case of vector spaces over a field, from the previous we deduce that
M®@s N — (M®4 N)°° =Homa(M, N°)° — Homu(M°, N)°

is an isomorphism, which gives a new definition of the tensor product of vector spaces.
In the case where N = M° we conclude that M ® 4 M° is isomorphic to the space
dual to the space of A-linear operators Hom 4 (M, M) of M.

3.8. Extension of the ground ring.
Let B bean A-module whichis aring. Foran A-module M define Mg = B M
with

b aibi @my)) = ai(bby) @ m,.

This makes Mp a B-module, which is obtained from M by “extension of scalars”
A — B.

Examples. 1. To every R-vector space V' one associates its comlexification V¢ =
V ®@r C which is a vector space over C of the same dimension as the dimension of V'
over R.

2. For a finitely generated abelian group M the Q-module My is a finite dimen-
sional vector space over Q. Note that if M is torsion (i.e. for every m € M there is
a non-zero integer n such that nm =0) then Mg = 0.

4. Noetherian modules

4.1. Proposition-Definition. An A-module M is called Noetherian if it satisfies one
of the following equivalent conditions:

(i) every submodule of M is of finite type;

(ii) every increasing sequence of submodules stabilizes;

(iii) every nonempty family of submodules contains a maximal element with respect
to inclusion.

Proof. (i) = (ii): if M, is an increasing sequence of submodules, then consider
UM,, which is a submodule of finite type = > x;A; if all x; belong to M,,, then
My, =My = ...
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(¢7) = (i22): if there is a nonempty family of submodules without a maximal el-
ement, then for every submodule in the family there is a submodule which is strictly
larger; then one gets an strictly increasing infinite sequence of submodules, a contra-
diction;

(447) = (¢): let N be a submodule of M and let E be a maximal module in the
family of submodules of finite type of N, then for every = € N the group E + Ax is
a submodule of finite type and £ C E+ Az. Thus E+ Az = F andso N = F isa
module of finite type.

4.2. Definition. A ring A is called Noetherian if A is a Noetherian A-module. In
other words the conditions of 5.1 hold for A with submodules replaced by ideals.

4.3. Example. An integral domain is called a principal ideal domain if every ideal is
principal. Every principal ideal domain is Noetherian; in particular, every field and Z
are Noetherian rings.

Corollary. Every nonempty family of ideals in a principal ideal domain contains a
maximal element.

4.4. Example. Let A be aring and let B be the polynomial ring A[X, X5, ...] of
polynomials in infinitely many variables X;. Then

(X1) C (X1, X2) C (X, Xp, X3) C ...
is a strictly increasing sequence of ideals of B. Thus, B is not a Noetherian ring.

4.5. Lemma. Ifthe quotientring A/I isaNoetherian A-module, thenitisaNoetherian
A/I-module, i.e. itis a Noetherian ring.

Proof. By the correspondence theorem A-submodules of A/I are in one-to-one cor-
responence with A-submodules of A which contain I, the latter being the set of all
ideals of A which contain I and by the correspondence theorem it is in one-to-one
correspondence with the set of all ideals of A/I.

4.6. Lemma. Let M be an A-module and N is a submodule of M. Then M is a
Noetherian A-module iff N and M /N are.

Proof. Work with increasing sequences of submodules ((ii) in 4.1. Let M be Noethe-
rian. Then increasing sequences of submodules of /N stabilize and so do increasing
sequences of submodules of M /N, since they are in 1-1 correspondence with increasing
sequences of submodules of M which contain /N. This proves one implication.

Let N and M /N be Noetherian and let M; be an increasing sequence of sub-
modules of M. Then there is ¢; such that M; "N = M,,; N N for ¢+ > ¢; and
there is i, such that (M; + N)/N = (M1 + N)/N for i > iy. Let i3 = max(iy,ip)
and let ¢ > i3. Let a € M;,;. Then a = b+ c forsome b € M; and ¢ € N. So
ce M;;yyuNN=M;NN C M; and hence a € M;; thus M, = M;.
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Corollary 1. If N; are Noetherian A-modules, sois @} N;.

Proof. Induction on n using 4.6 and the property that the quotient module
@, N;/ @' N; is isomorphic to N,,.

Corollary 2. A homomorphic image of a Noetherian module is Noetherian.

Corollary 3. Let A be a Noetherian ring and let M be an A-module of finite type.
Then M is a Noetherian A-module

Proof. Let M have rank n. Then M is a quotient module of A™. Since A is a
Noetherian A-module, so is so is A™. Hence M as a quotient module of A™ is
Noetherian.

4.7. Theorem. Let A be a Noetherian ring. Then A[X] is a Noetherian ring.

Proof. Let J be a non-zero ideal of A[X]. For n > 0 define
Jn={a€A: thereis f(X)=ap+ ---+aX" € J}.

Then J,, is an ideal of A. Since X(ag+ ---+aX") = qpX + -+ + aX"™!, we
deduce that J; C J, C .... Since A is Noetherian, we deduce that there is n such
that J, = J,41 = .... For m < n the ideal J,, as an ideal of the Noetherian
ring A is finitely generated, let cgm) for 1 < j < k,, be its generators. Denote by
f J(.m)(X )=+ cém)X ™ any polynomial of this type in J.

Let f € J beofdegree m. If m > n, then f(X)=ap+ ---+aX™ and a € J,;, =
I, SO ther.e are a; € A suchthat a =37, ajcgn). Then f(X)— Zj(anm*”)fJ(-n) is
a polynomial in J of degree smaller than m.

If m < n, then there are a; € A such that a = Ej ajcg-m). Then f(X) —

>0 f;’”) is a polynomial in J of degree smaller than m.

We see that we can decrease the degree of a polynomial on .J subtracting from it an
appropriate A[X]-linear combination of f ;T”)(X ). By induction on m we deduce that
every polynomial in J is a linear combination with coefficients in A[X] of f ](m)(X ),
0<m<n, 1 <j<ky. Thus, J is finitely generated and A[X] is Noetherian.

Remark. Note that the Noetherian ring A[X] is not a module of finite type over

A, since 1,X,X?, ... are A-linear independent. So A[X] is not a Noetherian
A-module.
Corollary. The polynomial ring K[X1, ..., X,], where K is afield, is a Noetherian

ring. The quotient ring K[X1, ..., X,]/I of the polynomial ring is a Noetherian ring.
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5. Unique factorization domains

All rings in this section are integral domains.

5.1. Recall that a unit of a ring A is an inverstible element of A. All units A* of a
ring A form a group with respect to multiplication.
Recall that for non-zero a, b

(a) C (b) iff b divides a (i.e. there is ¢ € A such that a = be).

Hence (a) = (b) iff aA* = bA*. Denote by F' the field of fractions of A. Then
(a) = (b) iff ab~! € F belongs to A*.

Definition. A non-zero element a of a ring A which is not a unit of A is called a
prime element if a = bc implies b is a unit or ¢ is a unit.

Note: if a is a prime element, then au is a prime element for any unit .

Exercise: a is a prime element iff the ideal (a) is a maximal element in the family
of proper principal ideals of A (call such ideals maxp).

Example: if A is a principal ideal ring, then an ideal is a maxp ideal iff it is a
maximal ideal.

5.2. Theorem. Every proper non-zero ideal of a principal ideal domain A is the prod-
uct of maxp ideals whose collection (counting multiplicities) is uniquely determined.

Proof. Let (a) be aproperideal of A. Consider the family of properideals of A which
contain (a). The Noetherian property of A implies this family contains a maximal
element, say (p1). So (p;) is a maximal principal ideal of A. Write a = pja; with
a; € A. Since p; isn’taunit, (a) is properly contained in (a;). Continue for ay, get
ay, etc. By 4.3 the chain of ideals (a;) C (ap) C ... should stabilize, which means
that (a,,) = A for some n (i.e. a, isaunitof A). Then (a) = (p1)...(pn).

Let (p1)...(pn) = (q1)---(gm). Since A is a principal ideal domain, (p;) is a
maximal ideal of A, and hence it is a prime ideal of A. From q;...¢q,, € (p;) we
deduce that, say, q; € (p1). So (q1) C (p;) and since (q;) is a maximal ideal of A,
(q1) = (p1). So, upto aunitof A the product p; ... p, isequalto ¢ ... ¢n, and hence
(P2)...(Pn) =(q2)-..(gm). The induction hypothesis implies the uniqueness.

5.3. Definition. A ring A is called a unique factorization domain if every non-zero
element of A is uniquely factorized into a product of prime elements and a unit.
Equivalently, every proper non-zero ideal (a) is a product of a uniquely determined
collection (counting multiplicities) of maxp ideals.

Example. Every principal ideal domain is a unique factorization domain.
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Recall that every field, Z and every polynomial ring K[X] over a field K is a
principal ideal domain.

Indeed, for fields it is clear. For the ring of integers and the polynomial rings over
fields one can use the division algorithm. Namely, if I is a non-zero proper ideal of such
aring A, then it contains an element a # 0 whose module |a| is minimal (resp. whose
degree is minimal) positive. Now for every b € I write using the division algorithm
b=ac+q with c € A where 0 < ¢ =b — ac € I is smaller than |a| (resp. of degree
smaller than that of a) or ¢ = 0. The former is impossible, so the latter means that
I C (a), but obviously, (a) C I, so I =(a) is a principal ideal.

The previous theorem now implies that every field, Z and every polynomial ring
K[X] over afield K is a unique factorization domain.

Prime elements of a field F': none; units: all non-zero elements.

Prime elements of Z: 42,43, 45, ...; units: +1.

Prime elements of K[X]: irreducible polynomials of positive degree; units: ele-
ments of K *.

5.4. Lemma. If A is a unique factorization domain. Let p be a non-zero element of
A, notaunitof A. Then p is a prime element of A iff (p) is a non-zero prime ideal
of A.

Proof. Since p is not a unit and not zero, the ideal (p) is a proper non-zero ideal of A.
Let p be a prime element. Then from ab € (p) one deduces that ab = pc and the
unique factorization property shows that either a or b is divisible by p, i.e. a € (p)
or b € (p); thus, (p) is a prime ideal of A.
Let (p) be a prime proper ideal of A. If p = ab then either a or b belongs to
(p). If, say, a = pc, then p = pcb, so cb =1 and b is a unit of A; thus p is a prime
element.

5.5. Definition. Let A be a unique factorization domain. For two elements a, b their
gcd is any element ¢ of A such that ¢ divides a and b, and every d which divides a
and b divides c¢. A gcd is unique up to multiplication by a unit of A.

Equivalently, d = gcd(a,b) iff (d) is the minimal principal ideal of A containing
(a,b).

If both a,b are non-zero and non-units, and @ = up|' ...p" and b=vp|"' ...pI""
with units w,v, prime p; and non-zero m;,n;, then d = wpll1 ...plr where [; =
min(n;, m;) and w is a unit.

Similarly one defines a gcd of several elements.

Lemma. Let A be a principal ideal domain. Then d is a gcd of a and b iff (d) =
(a) + (D).

Proof. The ideal generated by gcd(a, b) is the minimal principal ideal of A containing
(a,b) = (a) + (b), as noted above.
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Elements a,b are called relatively prime if their ged is a unit of A. Two elements
a, b are relatively prime iff every factorization of a does not involve a prime element
which divides b. In particular, a prime element p is relatively prime with b iff p does
not divide b. In principal ideal domains a, b are relatively prime iff (a, b) = (1).

6. Polynomial ringsover unique factorization domains

In this section A is a unique factorization domain.

6.1. Definition. A polynomial f € A[X] is called primitive if no prime element of A

divides all the coefficients of f. In other words gcd of the coefficients of f is a unit
of A.

Lemma. Every polynomial ¢ in A[X] can be written as af with a« € A and a
primitive polynomial f. Here a is a gcd of the coefficients of g.

6.2. Lemma. Let K be the quotient field of A. For every non-zero polynomial f €
K[X] thereisanon-zero a € K suchthat af € A[X] is primitive.

Proof. Let d € A be the product of denominators of all coefficients of f. Then
g =df € A[X]. Let e be a gcd of all coefficients of g. Then d/e is the required
element a € K.

6.3. Lemma. The product of two primitive polynomials is primitive.

Proof. Let p be a prime element of A. Let f(X) = a, X"+ -+ - +ap and g(X) =
b X™ + - -+ + by be primitive polynomials. Let r be the minimal number such that
p doesn’t divide a,; similarly, s the minimal number such that p doesn’t divide b;.
The coefficient c,s of X™* of fgis a,bs+),_, Gibrys_i+ ZKS ar+s—jb;. Since
ar,bs are prime to p, p does not divide a,.bs. Since a; for ¢ < r and b; for j < s
are divisible by p, p doesn’tdivide c¢,.

6.4. Lemma. If f, g are primitive polynomialsin A[X] and f = cg with ¢ € K, then
cisaunitof A.

Proof. Let ¢ = a/b with relatively prime a,b € A. Then ag = bf and so b divides
ag. Since a gcd of the coefficients of ¢ is a unit of A, a ged of the coefficients of ag
is a times a unit u of A. The element b is relatively prime to a and divides au, so b
is a unit of A. Similarly, @ is a unit of A. Thus, ¢ is a unit of A.
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6.5. It is easy to see that the units of the polynomial ring A[X] (i.e. invertible
polynomials) are units of A: A[X]* = A*. A polynomial f in A[X] of positive
degree is called irreducible in A[X] if it is a prime element of A[X], i.e. if from
f =gh with g, h € A[X] it follows that either g or h is a unit of A[X], i.e. belongs
to A*.

Lemma. Let A be a unique factorization domain and K be the quotient field of A.
Let f € A[X] be a primitive polynomial of positive degree. Then f is irreducible in
A[X] iff f isirreducible in K[X].

Proof. First, if f is irreducible in K[X], and f = gh is its factorization in A[X]
then either g or h is of degree zero, and so is an element of A dividing f(X). Since
f(X) is primitive, this element is a unit of A. Thus, f is irreducible in A[X].

Now suppose f isirreduciblein A[X]. Let f = gh with polynomials g, h over K.
Using 6.2 let a,b € K \ {0} be such that ag,bh € A[X] are primitive polynomials.
Then abf = agbh is a primitive polynomial by 6.3. Since f and abf are primitive
polynomials, we deduce from 6.4 that ab is aunitof A. Let vab=1 for v € A. Thus,
f = (vag)(bh) is a factorization of f in A[X]. Then either the degree of vag (and
hence of ¢) is zero or the degree of bh (and hence of h)is zero. Thus f is irreducible
in K[X].

6.6. Theorem. Let A be a unique factorization domain. Then A[X] is a unique
factorization domain. Its units are units of A and its prime elements are prime elements
of A and primitive irreducible polynomials over A of positive degree.

Proof. Let K be the quotient field of A. Recall that the ring K[X] is a unique
factorization domain and its prime elements are irreducible polynomials of positive
degree over K.

If p is a prime element of A, then from p = fg with f,g € A[X] it follows that
f,g € A; thus p is a prime element of A[X]. In 6.5 we saw that irreducible primitive
polynomials of positive degree are prime elements of A[X].

Let f be a non-zero polynomial of positive degree in A[X]. Write f = ag with
some non-zero a € A and a primitive polynomial ¢ of positive degree. The latter can
be factorized in K[X] as []g; with irreducible polynomials g; € K[X] of positive
degree. In accordance with 6.2 let a; € K* be such that a;g; is a primitive polynomial
of positive degree. Since a;g; is irreducible in K[X], it is irreducible in A[X] by
6.5. Then g[]a; = [[(a;g;) is a primitive polynomial by 6.3. Since ¢ is primitive,
[Ja; is aunitof A by 6.4. Let v][[a; =1 fora v € A%, then f = av]](a;g;). If
a =[] b; is a factorization of a in A, then f = v][][b;][(a;g;) is a factorization of
f in the product of prime elements of A[X]. We can also factorize non-zero constant
polynomials in A[X] into the product of prime elements of A. Thus, every non-zero
and non-unit element of A[X] can be factorized into the product of prime elements of
A and primitive polynomials of positive degree which are irreducible over A.
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If f=o"[]b;]]f! isanotherfactorizationof f in A[X], then from the uniqueness
of factorization in K[X] we deduce that up to a permutation f; = ¢;f/ for some
c; € K* and all i. By Lemma 4 all ¢; are units of A. Then from uniqueness of
factorization in A we conclude that up to a permutation b; = u;b} for units u; of A.

Thus, the set of prime elements of A[X] consists of prime elements of A and
primitive polynomials of positive degree which are irreducible over A, and A[X] isa
unique factorization domain.

6.7. Examples.
1. Prime elements of Z[X]: £2,43,£5, ... and X, X —1, X +1,...,2X+1,2X +
3, ...,X2 + 1, .... Note that Z[X] is not a PID (since the ideal (2, X) is not

principal). More generally, Z[ X1, ..., X,], F[X, ..., X,] (F is afield) are unique
factorization domains.

2. Prime elements of F[X][Y]: irreducible polynomials in F[X] and irreducible
polynomials f(X,Y) = go(X)+g1(X)Y + -+ + g, (X)Y" in F[X,Y], n > 0, such
that (go(X), ..., gn(X)) = F[X]. Note that F[X][Y] is not a PID.

6.8. Reduction criterion of irreducibility. Let A be a unique factorization domain
and p a prime element of A suchthat ' = A/pA is afield. Let f(X) € A[X] bea
primitive polynomial of positive degree whose leading coefficient is not divisible by p.
Denote the image of f(X) in A[X]/pA[X] by f(X). If f(X) isirreduciblein F[X]
then f(X) is an irreducible polynomial in A[X].

Proof. If f = gh with polynomial g,h over A of positive degree then their leading
coefficients are not divisible by p. Hence f = gh with polynomials g, h of positive
degree, a contradiction.

Example. X2+ X + 1 has no roots in Z/2Z, hence it is irreducible over Z/2Z.
Then 2n+ DX?+ 21+ 1)X + (2k + 1) is irreducible in Z[X] for all integer n, [, k.

6.9. Eisenstein criterion of irreducibility. Let p be a prime element of A. Let
fX)=a, X"+ ---+ag € A[X],

be a primitive polynomial of positive degree. Assume that a,, isn’t divisible by p,
Qn_1, ...,ao are divisible by p and aq isn’t divisible by p%. Then f(X) is an
irreducible polynomial in A[X] and in K[X].

Proof. If f = gh with polynomials g, over A of positive degree then their leading
coefficients are not divisible by p. Let g(X) = b,,X™ + --- + by and h(X) =
a X'+ -+ +¢p. Since ag = bycg is divisible by p and not by P2, only one, say by is
divisible by p and cq is relatively prime to p. Let s > 0 be the smallest integer such
that b is not divisible by p. Then ay = bsco+ ) ., ., bics—i +bocs isn’t divisible by
p, so s =n and the degree of g is n, and that of h is zero. Thus, f is irreducible.

Example. X" +pX" '+ ... +pX +p is irreducible over Z.



18 Algebra 2

7. Modulesover principal ideal domains

Everywhere in this section A is a principal ideal domain.

7.1. Lemma. (1) M,(A)* consist of matrices whose determinant is a unit of A.

(2) Let zq, ...,z be generators (a basis) of an A-module M. Then for every
matrix T € M(A)* elements yy, ..., yx given by
Y1 x
=T
Yk Tk

are generators (resp. a basis) of M.

Proof. (DIfT € M(A)* then TT' = E forsome T’ € M (A). So det(T)det(T") =
1, and det(T') € A*. Conversely, let det(T") € A*. Recall that the inverse matrix 7"’
of a nonsingular matrix 7' can be found by a formula

T' = det(T) " (aij)

where the entry a;; of the adjugate to 7" matrix is (—1)**/ times the determinant of the
matrix obtained from 7" by cutting off the ¢ th column and j th row. In particular, since
T € Mi(A), (ai;) € M(A). Now, since det(T) € A* we conclude 7" € M (A).

(2) Since T is invertible in M (A), not only elements ¥y, ..., ¥y, are A-linearly
expressible via elements xi, ...,x, but xy, ...,x, are A-linearly expressible via
elements v, ..., Y.

7.2. Theorem (On submodules of a free module). Let M be a free A-module of
finite rank n. Let N be anon-zerosubmodule of M. Then (i) N isfreeof rank k < n;
(i) M has a basis z1, ...,x, suchthat ajzy, ...,agx, is a basis of N where a;
are non-zero elements of A suchthat (a;) D (a2) D -+ D (ax) # 0. This sequence of
ideals is uniquely determined by V.

Proof. Existence.

The module M is of finite type over the Noetherian ring A, so it is a Noetherian
A-module by Corollary 3 in 4.6. N is its submodule, so it is a Noetherian A-module
by Lemma 4.6.

Let zq, ...,x, be abasis of M. Let yi, ...,y be generators of N. Each of
them can be written as a linear combination of x; with coefficients in A:

Y1 T
=(ai)) | ... |, aiy €A
Ym Tn

Due to the previous lemma one can (by passing to another generators of M and N)
multiply (a;;) by invertible matrices in M,,(A) on the left and invertible matrices in
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M, (A) on the right. We aim to show that as a result of such permited transformations
the matrix (a;;) can be transformed to the matrix of the form
aq 0
0 as

oo
oo
c o
=5
o

with (a1) D (ap) D --- D (ag).

Note that some of those multiplications correspond to interchange of columns or
rows, multiplication of a column or row by a unit of A, and addition of a column (row)
with another column (row) multiplied by an element of A.

For a non-zero element a of A define l(a) as the number of prime elements
(counting multiplicities) in a factorization of a; this number does not depend on the
choice of factorization. « is a unit iff {(a) = 0. Put [(0) = +oc0.

It easy to see that if d is a gcd of a, b then [(d) < min(l(a), (D). If (d) # (a),¥ (),
then I(d) < min(l(a), I(b)).

The proof goes by induction on max(m, n).

Base of induction. If max(n,m) = 1, the statement is clear, since the matrix (a;;)
is 1 x 1.

Induction step. It is sufficient to prove the following claim: A can be transformed

to a matrix with a; dividing all entries of the matrix B (so that then one

1 0
0 B
applies the induction hypothesis to B, and a; will divide the entries of transformed
B). The proof of the claim goes by second induction on [ = min(l(a;;)).

Let [ = 0. Then one of a;; is a unitin A. By interchanging rows and columns
one can assume that ¢ = j = 1. So aj; divides all other elements of the matrix. By
subtracting from the ¢ th row the first row multiplied by a;; (11_11 and by similar operation
with the columns we can transform the original matrix to a new one (denote it still by
(a;;) whose entries in the first row and column except ay; are zero and ap; divides all
other entries.

Let [ > 0. Using the induction hypothesis (on /) we can assume that no permitted
transformation of the matrix (a;;) makes its number [ strictly smaller.

One can assume without loss of generality that [ = [(a1). If a;; doesn’t divide
some aj; or some a;1, say ajz, thenlet d be a gcd of aj; and ajp andlet e, f € A
be such that eay/d + fajp/d=1. Let

e —alz/d 0
T= f an/d 0
0 0 E
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The matrix T has determinant 1 and

O R

Since I(d) < l(a11) =1, we get a contradiction.

So ay; mustdivide all aj; and a;;. By subtracting from the i th row the first row
multiplied by a“afll and by similar operation with the columns we can transform the
original matrix to a new one (denote it still by (a;;) whose entries in the first row and
column except aq; are zero and [ = I(aq1) is still the minimum of I(a;;).

If aj; doesn’t divide some a;; with 7, j > 2, then add to the first row the 7 th row
which puts a;; in place 1j. Repeating the previous argument we get a contradiction.

Thus, both incase [ =0 and [ > 0 aj = ay; divides all a;; and entries in the first
row and column except aj; are zero.

Thus, M has a basis z1, ...,z, such that NV is generated by a;zy, ..., arxg.
Clearly k¥ < n. From ) ¢;(a;xz;) = 0 one deduces c;a; = 0 (since x; is a basis of
M) and hence ¢; =0. Thus, a;xq, ...,a,x; form a basis of N.

Uniqueness. Let d; be a ged of the i-rowed minors of (a;;). Since the rows (resp.
columns) of T'(a;;) (resp. (a;;)1") are linear combinations of rows (resp. columns) of
(a;j), d; divides a gcd of the i-rowed minors of T'(a;;) and of (a;;)T". Since T' is
invertible, we conclude that d;((a;;))A™ = d;(C)A*. Since the i-rowed minors of C'
is aq ...a;, we deduce that

d;(CY=ay...a;u=a;d;_1(C
for units u,v. Thus a; are equal up to a unit of A to d;((a;;))/d;—1((a;;)). So (a;)

are uniquely determined by the submodule N.

7.3. The Main Theorem on modules of finite type over a principal ideal domain. Let
A Dbe a principal ideal domain. Let R #0 be an A-module of finite type. Then

R~A/I® ---® A/,
where I} D --- D I, are proper ideals of A (some of which may be zero) uniquely
determined by R.

Proof. Let ry, ..., 7, be aminimal set of generators of R. By 2.6 there is a surjective

homomorphism f:(A)” — R so that R is isomorphic to (A)"/N where N is the

kernel of f. Let M = (A)™; apply the previous theorem. Put a; = 0 for i > k and

I; = a;A. So the sequence of the ideals I, ..., I, is uniquely determined by R.
Define a map

It is an isomorphism. Thus,
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Example.  Finitely generated abelian groups: every such group is isomorphic to
®iZ)a; 7 & (Z)"* with a; dividing ay dividing a3, ..., dividing aj # 0.

7.4. Corollary. Every module of finite type over a principal ideal domain is isomorphic
to the direct sum @M; of modules M; where M; = A or M; = A/p™A where p isa
prime element of A.

Proof. If I} = (a;) and a; = [[p;" with prime p; then by the Chinese Remainder
Theorem in 1.5 we have A/I} ~ [[ A;/p;" A.

7.5. Definition. A module M over an integral domain A is torsion free if am =0
implies a =0 or m = 0.

Examples. (A)™ is torsion free; A/ is not torsion free if I # 0.

Corollary. Every torsion free module of finite type over a principal ideal domain is
free.

Proof. Indeed, if R is a torsion free module of finite type then all I in theorem 8.3
must be zero, so R ~ A" is free.

Exercise. Q is a torsion free Z-module and is not free. Of course, Q is not of finite
type over Z.

8. Spectrum of rings

8.1. One cantry to study a ring A by looking at all of its surjective images in integral
domains, which is equivalent to looking at all prime ideals of A. Alternatively one
can study A by looking at all of its surjective images in fields, which is equivalent to
looking at all maximal ideals of A.

Definition. The spectrum Spec (A) of a ring A is the set of prime ideals P of A.
The maximal spectrum m-Spec( A) of aring A is the set of maximal ideals M of A.

8.2. Examples. 1. Spec of a field consists of one element — the zero ideal (0).

2. Spec(Z) is in one-to-one correspondence with all positive prime numbers and 0.

3. If A is a principal ideal domain, then Spec (A) consists of principal prime ideals
(a) where a runs through all classes of prime elements of A up to multiplication by a
unit of A and zero.

If K is a field, then Spec (K[X]) consists of the zero ideal and principal ideals
generated by monic irreducible polynomials.

In particular, elements of Spec (C[X]) different from {0} (i.e. elements of the max
spectrum m-Spec (C[X])) are one-to-one correspondence with complex numbers.
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4. If A isaprincipal ideal domain, then it can be shown that Spec (A[X]) consists of
the zero ideal, principal ideals generated by irreducible polynomials f(X) and maximal
ideals M = (p,q(X)) generated by two elements, where p is a prime element of A
and the reduction of ¢(X) modulo p is an irreducible polynomial over A/pA.

8.3. Let f: A — B beahomomorphism of rings. Let P be a prime ideal of B. Then
its preimage f~!(P) is a prime ideal of A (notethat 1z & P implies 14 & f~'(P)).
So we get a map of sets

f*:Spec(B) — Spec(A), Pw— f~(P).

Examples: Spec(Z/pZ) — Spec(Z), Spec(Z[i]) — Spec (Z).

Let M be a maximal ideal of B. Then f~!(M) isn’t necessarily a maximal ideal
of A.

Example: f:7Z — Q, f~'({0})={0}.

However, if f is surjective, then A/f~(M) ~ B/M, so f~'(M) is a maximal
ideal of A.

It is more natural to work with Spec rather than with m-Spec even though the
latter is more naturally related with analytic and geometric objects.

8.4. Geometric interpretation of spectrum. Let I be an ideal of C[ Xy, ..., X,,].
The set V' =V (I) of all solutions of polynomial equations f(Xy, ..., X,,)=0, fel
is called an algebraic variety.

For a subset X of C" consider the set of all polynomials g € C[ X, ..., X,,] for
which ¢(X) = 0. Itis anideal of C[ X, ..., X, ] and called the ideal J(X) of the set
X.

So one has two maps:

V:ideals of C[ X, ..., X, ] — algebraic varieties of C",
J:subsets X of C" — ideals of C[ X, ..., X,,].

We have J(X) C J(Xp) if X1 D X, and V(I}) C V(Ip) if I} D L, J) =
ClXy, ..., X,], JVU) D1, V(J(X)) D X.

Definition. For an ideal I its radical v/T is the set of elements a of A such that
a™ € I forsome n > 0.

Then+/T is anideal: if a”,b™ € I then (a+b)"*™ € I. If I is prime theny/T = I.

Hilbert theorem on zeros. J(V(I)) =V/I. In particular, if I is prime then J(V(I)) =
I

An algebraic variety X is called irreducible if X = V(1) for a prime ideal I.

Theorem. Themaps V, J induce a 1-1 correspondences between Spec (C[ X1, ..., X,])
and irreducible algebraic varieties of C™. They induce a 1-1 correspondence between
m-Spec (C[ X, ..., X,]) and points of C™.
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Proof. The previous theorem implies that if an algebraic variety V' is irreducible
= V() foraprimeideal I, then J(V) = I isaprime ideal. We also have V(J(V (1)) =
V' (I). Hence the maps V' and J are 1-1 correspondences between

Spec (C[ Xy, ..., X,]) and irreducible algebraic varieties of C" .

To prove the second part we need to describe the image of maximal ideals.
If x is a point of C", then the map

ClXy, ..., Xl = C, [ f2)

is a surjective homomorphism whose kernel M, consists of polynomials which have z
as a zero. Thus, M, is a maximal ideal of C[X, ..., X,,]. Obviously z € V(M,).
Since for y # x there is a polynomial f such that f(x) = 0 # f(y) and we deduce
V(M,) ={x}.

The map x — M, is injective: as we have seen, if  #y then M, # M,,.

The image of the map = — M, conicides with all maximal ideals. If M is a
maximal ideal then V(M) is not empty, since by the Hilbert theorem J(V(M)) = M #
CIXy, ..., X1 =J@). Let 2 € V(M) then M, = J{z}) D J(V(M))= M, hence
since the LHS and RHS are maximal ideals, M, = M.

Thus, m — Spec((C[ X1, ..., X,]) = {M,} and its image with respectto V are all
points of C".

8.5. For an algebraic variety V' define the ring
CIV] = CIX1, ..., X,1/T(V).

It is called the ring of polynomial functions on V. If V is irreducible C[V] is an
integral domain.

By the correspondence theorem we have a one-to-one correspondence between
ideals of C[V] and ideals of C[X1, ..., X,,] which contain J(V'). It is easy to see
that maximal ideals of C[V'] correspond to maximal ideals of C[ X, ..., X,,] which
contain J(V'). Thus, from the previous theorem we deduce that for an algebraic variety
V' the maps V,J induce a 1-1 correspondence between m-Spec (C[V']) and points of
V.

8.6. Analytic interpretation of spectrum. Let X be a bounded closed set in a finite
dimensional vector space over R or C. Denote by C'(X) the set of all real continuous
functions on X. Itis aring. For z € X denote by M, the set of all functions ¢ in
C(X) for which g(z) = 0. Itis a maximal ideal of C'(X) as the kernel of the surjective
map C(X) — R, f — f(x). We have the map

®: X — m-Spec (C(X)), x+— M,.

From analysis it is known that for x # y there is f € C(X) such that 0 = f(z) #
f), so f e M, f¢&DM, and then M, # M,. Hence ® is injective.
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Let M be a maximal ideal of C(X) and V = V(M) = {z € X : f(x) =
0 forall f e M}. If V is empty, then for every x € X thereis f, € M such
that f,(x) # 0. Since f, is continuous, there is a neighbourhood U, of = where f,
takes only non-zero values. So X = UU,. One can deduce that there are finitely many
U, whose unionis X. Let X = U, U ---UU,, . Consider f = f:%] + -~+f£n.
Then f € M. Since for every x € X there is f,, such that fmi(a:)2 > 0 we
deduce f(x) > 0 forevery z € X. So f~! € C(X). Recall that f € M. Then
1 = ff~' € M, a contradiction. Thus, V is non-empty. Take any = € V. Then
M C M,, so M = M,. Thus, @ is a bijection and we proved

Theorem. There is a 1-1 correspondence between points of a bounded closed set
X in a finite dimensional vector space over R or C and the maximum-spectrum
m-Spec (C'(X)) of the ring of all real continuous functions on X.

9. Localization

9.1. Definition. Let A be aringand S is a subset of A. S is called a multiplicative
(sub)setif 1 € S and a,b € S=abe S.

Examples of a multiplicative sets:

1. S=A\ {0} is a multiplicative set if A is an integral domain.
2. For a prime ideal P the set S = A\ P is a multiplicative set.
3. For c€ A theset S, ={l,c,c?, ...} is a multiplicative set.

9.2. Let 0 ¢ S. Define a relation = on A x S
(a,s) ~ (b,t) iffthereis u € S such that (at — bs)u=0.

One can think of (a,s) as a/s. Transitivity of the relation: if (a,s) ~ (b,t) and
(b,t) ~ (c,p), then there are u,v € S such that (at — bs)u = (bp — ct)v = 0. Then
(ap — cs)tuv = 0. Since tuv € S, we conclude that (a, s) ~ (¢, p).

Denote by a/s the equivalence class of (a,s) with respect to =. Let S~!A be
the set of all equivalence classes. Define the ring structure by a/s + b/t = (at + bs)/st,
(a/s)(b/t) = ab/st. The RHS doesn’t depend on the choice of representatives. The
zero of S~'A is 0/1 and the unity is 1/1.

The ring S~! A is called the ring of fractions of A with respect to S.

9.3. Examples.

1) Let A be an integral domain. The equivalence relation then becomes (a, s) ~
(b, t) iff at —bs =0.

If S= A\ {0} then the ring S~'A is the fraction field of A.

From now on we will assume A is an integral domain. Then for every multiplicative
subset S of A\ {0} the ring S~'A is a subring of the fraction field of A.
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2) Let P be a prime ideal of A. Then S = A\ P is a multiplicative subset of A.
The ring

Ap=(A\P)'A={r/s:rc A s¢ P}

is called the localization of A at P; it is a subring of the field of fractions of A. For
example,

Lpy=A{r/s:r,s € L,s & pL}

is a subring of the field of rational numbers.

9.4. Define a homomorphism

p:A— STTA, pla) = a/l.

Since we assume A is an integral domain, this map is injective.
We have ¢(S) C (S~'A)* since (s/1)(1/s) = 1. For example, all primes in Z not
divisible by p have their images in the localization Z,) as units of the latter ring.

9.5. Proposition. Every ideal J of S~!A is of the form
S 'r={a/s:ael,seS}
where I = ¢~1(J) is anideal of A.

Proof. If I isanideal of A then S—'7 is anideal of S~!A.

If J is an ideal of S—!A, put I = gb_l(J); it is an ideal of A.

We have ¢(I) C J and hence ST C J.

If a/s € J, then forevery s € S we have (a/s)(s/1)=a/1 = ¢(a), so ¢(a) € J,
hence a € I, and a/s € S~'I. Thus, J Cc S7'I.

Corollary. If A is Noetherian, sois S—!A.

9.6. Proposition. Prime ideals of S—!A are in one-to one correspondence with prime
ideals of A disjoint with S

P,PNS=0+— S'P,
Q671 (@Q.
Thus, Spec(S~'A4)={PS~'A: P € Spec(A),PN S =0}.

Proof. Let P be a prime ideal of A disjoint with S.

If 1/1 were equal to p/s € S~!P, then we would have s = p € P which
contradicts s € S= A\ P.

If a/s-b/t =p/u with p € P, u € S, then abu = pst € P. Since u € S doesn’t
belong to P we deduce that ab € P and therefore either a € P or b € P. Then either
a/s € ST'P or b/t € ST'P and the ideal S~!P is prime.
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If Q is a prime ideal of S~! A, then its preimage P = ¢~ '(Q) is a prime ideal of
A by 8.3.

From the proof of Proposition 9.5 we get Q = S™'P. If PN S # (), then for
s € PNS we would have 1 = s/s € @, a contradiction. Therefore, P is disjoint with
S.

It remains to show that maps o: P — S~!P for PNS =0 and 5:Q — ¢~ 1(Q)
are inverse to each other. From 9.5 we already know that « o 3 is the indentity map.
To show (3 o « is the indentity map let a € ¢~'(S~!P). Then a/1 = p/s for some
p€ P,se€ S. Hence as=p € P. Since s ¢ P and P is a prime ideal, we deduce
a € P. Thus ¢~ (S~'P)=P.

9.7. Corollary. Let P be a prime ideal of A. Then the localization Ap has only one
maximal ideal, namely Mp = PAp. Thus, Spec(Ap) = {QAp : Q € Spec(A),Q C
P}, m-Spec(Ap) ={PAp}.

Proof. Indeed, primeideals of Ap correspond to prime ideals of A which are contained
in P. Hence the only maximal ideal of Ap corresponds to P. All other maximal
ideals of A dissappearin Ap.

Definition. Let P be a prime ideal of a ring A. The residue field of A at P is
k(P)= Ap/Mp.

Example. pZ,) is the only maximal ideal of Z,. Note that Z, isn’t a field (p
isn’t invertible in Z,) ). The residue field of Z at (p) is

k((p)) = Zp)/pZLp) = Fp.

9.8. Definition. Aring A is called a local ring if m-Spec (A) consists of one element,
i.e. A has exactly one maximal ideal.

Example. The localization Ap is a local ring. Every field is a local ring.

9.9. If A is alocal ring and M is its maximal ideal, then 1 + M C A*. Indeed,
if for some m € M 1+ m were not a unit of A, then the ideal (1 +m) is a proper
ideal of A, hence it is contained in the maximal ideal M ; since m € M we would get
1=1+m —m € M, acontradiction.

9.10. Nakayama’s Lemma. Let N be a module over a ring A generated by k
elements ny, ...,n,. Let I be anideal of A.

a)lf N=1IN = {Z;‘;l cjnj : c; € I} thenthereis anelement a € 1+ 1 such that
alN =0.

b) If M is the maximal ideal of a local ring A and M N = N, then N =0.
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Proof. a)Let N =IN. Assumethat N #0. Let ny, ...,n; € N be the minimal set
of generators of the A-module N with the minimal possible k. Then n; € N = IN,

SO np = Z?:l bljnj with blj € I. Then (1 — bj)n; — bipny — <+ — bypng = 0.
Similarly we find b;; for i =2, ...,n. So for the matrix C' = E — B, B = (b;;) we
have C' times the column consisting of ny, ...,n; equals 0. Multiplying N by its

adjugate matrix we obtain det(C)IN = 0. Finally, a =det(C) € 1 + I.

b) If M is the maximal ideal of a local ring A, then every element of 1+ M is a
unit, so the conditions of (a) are satisfied. So there is an element a € 1+ M such that
aN =0. Since 1 + M C A%, thereis b € A such that ba = 1. Now N =baN =0.

Corollary. Let A be acommutative ring with unity and let NV be an A-module of finite
type. Let f: N — N be a homomorphism of A-modules. Then f is an isomorphism
iff f issurjective.

Proof. Define on the abelian group N the structure of A[X ]-module by indicating the
action of X on N:

X -n:=fn), neN.

Let I = XA[X]. Then f(/N) = N implies /N = N and by part (a) of Nakayama’s
Lemma we know that there is an element a € 1+ I such that a/N = 0. The element a

can be written as 1+ p(X)X for a polynomial p(X) € A[X]. Then for every n in the
kernel of f we have

O=an=0+pX)Xm=n+pX)- (X -n)=n+pX) - (f(n))=n+0=n.

Thus, f is injective.



