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Preface

These lecture notes grew out of a course on elementary differential
geometry which I have given at Lund University for a number of years.
Their main purpose is to introduce the beautiful theory of Gaussian
geometry i.e. the theory of curves and surfaces in three dimensional
Euclidean space.

This is a subject with no lack of interesting examples. They are
indeed the key to a good understanding of it and will therefore play a
major role throughout this work.

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some basic topology.

Norra Nöbbelöv, 25 December 2008

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

Around 300 BC Euclid wrote ”The Thirteen Books of the Ele-
ments”. It was used as the basic text on geometry throughout the
Western world for about 2000 years. Euclidean geometry is the theory
one yields when assuming Euclid’s five axioms, including the parallel
postulate.

Gaussian geometry is the study of curves and surfaces in three di-
mensional Euclidean space. This theory was initiated by the ingenious
Carl Friedrich Gauss (1777-1855). The work of Gauss, János Bolyai
(1802-1860) and Nikolai Ivanovich Lobachevsky (1792-1856) lead to
their independent discovery of non-Euclidean geometry. This solved
the best known mathematical problem ever and proved that the par-
allel postulate was indeed independent of the other four axioms that
Euclid used for his theory.
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CHAPTER 2

Curves in the Euclidean plane R
2

In this chapter we study regular curves in the two dimensional Eu-
clidean plane. We define their curvature and show that this determines
the curves up to Euclidean motions. We then prove the isoperimetric
inequality for plane curves.

Let the n-dimensional real vector space R
n be equipped with its

standard Euclidean scalar product 〈·, ·〉 : R
n × R

n → R. This is
given by

〈x, y〉 = x1y1 + · · · + xnyn

and induces the norm | · | : R
n → R

+
0 on R

n with

|x| =
√

x2
1 + · · · + x2

n.

Definition 2.1. A parametrized curve in R
n is a differentiable

map γ : I → R
n from an open interval I on the real line R. The image

γ(I) in R
n is the corresponding geometric curve. We say that the

map γ : I → R
n parametrizes γ(I). The derivative γ′(t) is called the

tangent of γ at the point γ(t) and

L(γ) =

∫

I

|γ′(t)| dt ≤ ∞

is the arclength of γ. The curve γ is said to be regular if γ′(t) 6= 0
for all t ∈ I.

Example 2.2. If p and q are two distinct points in R
n then γ :

R → R
n with

γ : t 7→ (1 − t) · p + t · q
parametrizes the straight line through p = γ(0) and q = γ(1).

Example 2.3. If r ∈ R
+ and p ∈ R

2 then γ : R → R
2 with

γ : t 7→ p + r · (cos t, sin t)

7
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parametrizes a circle with center p and radius r. The arclength of the
curve γ|(0,2π) is

L(γ|(0,2π)) =

∫ 2π

0

|γ′(t)|dt = 2πr.

Definition 2.4. A differentiable curve γ : I → R
n is said to pa-

rametrize γ(I) by arclength if |γ̇(s)| = 1 for all s ∈ I i.e. the
tangents γ̇(s) are elements of the unit sphere Sn−1 in R

n.

Theorem 2.5. Let γ : (a, b) → R
n be a regular curve in R

n. Then

the image γ(I) of γ can be parametrized by arclength.

Proof. Define the arclength function σ : (a, b) → R
+ by

σ(t) =

∫ t

a

|γ′(u)|du.

Then σ′(t) = |γ′(t)| > 0 so σ is strictly increasing and

σ((a, b)) = (0, L(γ)).

Let τ : (0, L(γ)) → (a, b) be the inverse of σ such that σ(τ(s)) = s for
all s ∈ (0, L(γ)). By differentiating we get

d

ds
(σ(τ(s)) = σ′(τ(s))τ̇(s) = 1.

If we define the curve α : (0, L(γ)) → R
n by α = γ ◦ τ then the chain

rule gives α̇(s) = γ′(τ(s)) · τ̇(s). Hence

|α̇(s)| = |γ′(τ(s))| · τ̇(s)

= σ′(τ(s)) · τ̇(s)

= 1.

The function τ is bijective so α parametrizes γ(I) by arclength. ¤

For a regular curve γ : I → R
2, parametrized by arclength, we

define the tangent T : I → S2 along γ by

T (s) = γ̇(s)

and the normal N : I → S2 with

N(s) = R ◦ T (s).

Here R : R
2 → R

2 is the linear rotation of the angle π/2 given by

R :

(

a
b

)

7→
(

0 −1
1 0

)(

a
b

)

.

It follows that for each s ∈ I the set {T (s), N(s)} is an orthonormal
basis for R

2. It is called the Frenet frame along the curve.
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Definition 2.6. Let γ : I → R
2 be a regular curve parametrized

by arclength. Then we define its curvature κ : I → R by

κ(s) = 〈Ṫ (s), N(s)〉.

Note that the curvature is a measure of how fast the unit tangent
T (s) = γ̇(s) is bending in the direction of the normal N(s), or equiva-
lently, out of the line generated by T (s).

Theorem 2.7. Let γ : I → R
2 be a curve parametrized by arclength.

Then the Frenet frame satisfies the following system of ordinary differ-

ential equations.
[

Ṫ (s)

Ṅ(s)

]

=

[

0 κ(s)
−κ(s) 0

] [

T (s)
N(s)

]

.

Proof. The curve γ : I → R
2 is parametrized by arclength so

2〈Ṫ (s), T (s)〉 =
d

ds
(〈T (s), T (s)〉) = 0

and

2〈Ṅ(s), N(s)〉 =
d

ds
(〈N(s), N(s)〉) = 0.

As a direct consequence we have

Ṫ (s) = 〈Ṫ (s), N(s)〉N(s) = κ(s)N(s)

Ṅ(s) = 〈Ṅ(s), T (s)〉T (s) = −κ(s)T (s)

because

〈Ṫ (s), N(s)〉 + 〈T (s), Ṅ(s)〉 =
d

ds
(〈T (s), N(s)〉) = 0.

¤

Theorem 2.8. Let γ : I → R
2 be a curve parametrized by arclength.

Then its curvature κ : I → R vanishes identically if and only if the

geometric curve γ(I) is contained in a line.

Proof. If follows from Theorem 2.7 that the curvature κ(s) van-
ishes identically if and only if the tangent is constant i.e. there exist a
unit vector Z ∈ S1 and a point p ∈ R

2 such that

γ(s) = p + s · Z.

¤
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Theorem 2.9. Let κ : I → R be a differentiable functions. Then

there exists a curve γ : I → R
3 parametrized by arclength with curvature

κ. If γ̃ : I → R
3 is another such curve, then there exists an orthogonal

matrix A ∈ SO(2) and an element p ∈ R
2 such that

γ(s) = A · γ̃(s) + p.

Proof. See the proof of Theorem 3.10. ¤

In differential geometry we are interested in properties of geometric
object which are independent of how these objects are parametrized.
The curvature of a geometric curve should therefore not depend on its
parametrization.

Definition 2.10. Let γ : I → R
2 be a regular curve in R

2 not
necessarily parametrized by arclength. Let t : J → I be a C2-function
such that the composition α = γ ◦ t : J → R

3 is a curve parametrized
by arclength. Then we define the curvature κ : I → R of γ : I → R

2

by

κ(t(s)) = κ̃(s),

where κ̃ : J → R is the curvature of α.

Proposition 2.11. Let γ : I → R
2 be a regular curve in R

2. Then

its curvature κ satisfies

κ(t) =
det[γ′(t), γ′′(t)]

|γ′(t)|3 .

Proof. See Exercise 2.5. ¤

Corollary 2.12. Let γ : I → R
2 be a regular curve in R

2. Then

the geometric curve γ(I) is contained in a line if and only if γ′(t) and

γ′′(t) are linearly dependent for all t ∈ I.

Proof. The statement is a direct consequence of Theorem 2.8 and
Proposition 2.11. ¤

We complete this chapter by proving the isoperimetric inequality.
But let us first remind us of the following topological facts.

Definition 2.13. A continuous map γ : R → R
2 is said to param-

etrize a simple closed curve if it is periodic with period L ∈ R
+ and

the restriction

γ|[0,L) : [0, L) → R

is injective.

The following result is called the Jordan curve theorem.
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Fact 2.14. Let the continuous map γ : R → R
2 parametrize a

simple closed curve. Then the subset R
2 \γ(R) of the plane has exactly

two connected components. The interior Int(γ) of γ is bounded and the

exterior Ext(γ) is unbounded.

Definition 2.15. A regular map γ : R → R
2, parametrizing a

simple closed curve, is said to be positively oriented if its normal

N(t) = R ◦ γ′(t)

is an inner normal to the interior Int(γ) for all t ∈ R. It is said to be
negatively oriented otherwise.

We are now ready for the isoperimetric inequality.

Theorem 2.16. Let C be a regular simple closed curve in the plane

with arclength L and let A be the area of the region enclosed by C. Then

4π · A ≤ L2

with equality if and only if C is a circle.

Proof. Let l1 and l2 be two parallel lines touching the curve C such
that C is contained in the strip between them. Introduce a coordinate
system in the plane such that l1 and l2 are orthogonal to the x-axis
and given by

l1 = {(x, y) ∈ R
2| x = −r} and l2 = {(x, y) ∈ R

2| x = r}.
Let γ = (x, y) : R → R

2 be a positively oriented curve parameterizing
C by arclength, such that x(0) = r and x(s1) = −r for some s1 ∈ (0, L).

Define the curve α : R → R
2 by α(s) = (x(s), ỹ(s)) where

ỹ(s) =

{

+
√

r2 − x2(s) if t ∈ [0, s1),

−
√

r2 − x2(s) if t ∈ [s1, L).

Then this new curve parameterizes the circle given by x2 + y2 = r2.
As an immediate consequence of Lemma 2.17 we now get

A =

∫ L

0

x · y′ds and π · r2 = −
∫ L

0

ỹ · x′ds.

Employing the Cauchy-Schwartz inequality we then yield

A + π · r2 =

∫ L

0

x · y′ − ỹ · x′ds

≤
∫ L

0

√

(x · y′ − ỹ · x′)2ds
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≤
∫ L

0

√

(x2 + ỹ2) · ((x′)2 + (y′)2)ds

= L · r.
From the inequality

0 ≤ (
√

A − r
√

π)2 = A − 2r
√

A
√

π + πr2

we see that
2r
√

A
√

π ≤ A + πr2 ≤ Lr

so
4Aπr2 ≤ L2r2

or equivalently
4πA ≤ L2.

It follows from our construction above that the positive real number
r depends on the direction of the two parallel lines l1 and l2 chosen. In
the case of equality 4πA = L we get A = πr2. Since A is independent
of the direction of the two lines, we see that so is r. This implies that
in that case the curve C must be a circle. ¤

Lemma 2.17. Let the regular, positively oriented map γ : R → R
2

parametrize a simple closed curve in the plane. If A is the area of the

interior Int(γ) of γ then

A =
1

2

∫

γ(R)

(xy′ − yx′)dt =

∫

γ(R)

xy′dt = −
∫

γ(R)

x′ydt.
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Exercises

Exercise 2.1. A cycloid is a curve in the plane parametrized by a
map γ : R → R

2 of the form

γ(t) = r(t, 1) + r(sin(−t), cos(−t)),

where r ∈ R
+. Describe the curve geometrically and calculate the

arclength

σ(t) =

∫ t

0

|γ′(u)|du.

Is the curve regular ?

Exercise 2.2. An astroid is a curve in the plane parametrized by
a map γ : R → R

2 of the form

γ(t) = (4r cos3 t, 4r sin3 t) = 3r(cos t, sin t) + r(cos(−3t), sin(−3t)),

where r ∈ R
+. Describe the curve geometrically and calculate the

arclength

σ(t) =

∫ t

0

|γ′(u)|du.

Is the curve regular ?

Exercise 2.3. Let the curves γ1, γ2 : R → R
2 be given by

γ1(t) = r(cos(at), sin(at)), γ2(t) = r(cos(−at), sin(−at)).

Calculate their curvatures κ1, κ2.

Exercise 2.4. Let γ : I → R
2 be a regular curve, parametrized by

arclength, with Frenet frame {T (s), N(s)}. For λ ∈ R we define the
parallel curve γλ : I → R

2 by

γλ(t) = γ(t) + λN(t).

Calculate the curvature κλ of those curves γλ which are regular.

Exercise 2.5. Prove the curvature formula in Proposition 2.11.

Exercise 2.6. Let γ : R → R
2 be the parametrized curve in R

2

given by γ(t) = (sin t, sin 2t). Is γ regular, closed and simple ?

Exercise 2.7. Let the positively oriented γ : R → R
2 parametrize

a simple closed curve by arclength. Show that if the period of γ is
L ∈ R

+ then the total curvature satisfies
∫ L

0

κ(s)ds = 2π.





CHAPTER 3

Curves in the Euclidean space R
3

In this chapter we study regular curves in the three dimensional
Euclidean space. We define their curvature and torsion and show that
these determine the curves up to Euclidean motions.

We equip the three dimensional real vector space R
3 with the stan-

dard cross product × : R
3 × R

3 → R
3 satisfying

(x1, y1, z1) × (x2, y2, z2) = (y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1).

Example 3.1. If p and q are two distinct points in R
3 then γ :

R → R
3 with

γ : t 7→ (1 − t) · p + t · q
parametrizes the straight line through p = γ(0) and q = γ(1).

Example 3.2. Let {Z,W} be an orthonormal basis for a 2-plane
V in R

3, r ∈ R
+ and p ∈ R

3. Then γ : R → R
3 with

γ : t 7→ p + r · (cos t · Z + sin t · W )

parametrizes a circle in the affine 2-plane p + V with center p and
radius r.

Example 3.3. If r, b ∈ R
+ then γ : R → R

3 with

γ = (x, y, z) : t 7→ (r · cos t, r · sin t, b · t)
parametrizes a helix. It is easy to see that x2 + y2 = r2 so the image
γ(R) lies on the circular cylinder

{(x, y, z) ∈ R
3| x2 + y2 = r2}

of radius r.

Definition 3.4. Let γ : I → R
3 be a curve parametrized by arc-

length. Then the curvature κ : I → R of γ is defined by

κ(s) = |γ̈(s)|.
Theorem 3.5. Let γ : I → R

3 be a curve parametrized by arclength.

Then its curvature κ : I → R
+
0 vanishes identically if and only if the

geometric curve γ(I) is contained in a line.

15
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Proof. The curvature κ(s) = |γ̈(s)| vanishes identically if and
only if there exist a unit vector Z ∈ S2 and a point p ∈ R

3 such that

γ(s) = p + s · Z
i.e. the geometric curve γ(I) is contained in a straight line. ¤

Definition 3.6. A curve γ : I → R
3, parametrized by arclength,

is said to be a Frenet curve if its curvature κ is non-vanishing i.e.
κ(s) 6= 0 for all s ∈ I.

For a Frenet curve γ : I → R
3 we define the tangent T : I → S2

along γ by
T (s) = γ̇(s),

the principal normal N : I → S2 with

N(s) =
γ̈(s)

|γ̈(s)| =
γ̈(s)

κ(s)

and the binormal B : I → S2 as the cross product

B(s) = T (s) × N(s).

The curve γ : I → R
3 is parametrized by arclength so

0 =
d

ds
〈γ̇(s), γ̇(s)〉 = 2 〈γ̈(s), γ̇(s)〉.

This means that for each s ∈ I the set {T (s), N(s), B(s)} is an or-
thonormal basis for R

3. It is called the Frenet frame along the curve.

Definition 3.7. Let γ : I → R
3 be a Frenet curve. Then we define

the torsion τ : I → R by

τ(s) = 〈Ṅ(s), B(s)〉.
Note that the torsion is a measure of how fast the principal normal

N(s) = γ̈(s)/|γ̈(s)| is bending in the direction of the binormal B(s), or
equivalently, out of the plane generated by T (s) and N(s).

Theorem 3.8. Let γ : I → R
3 be a Frenet curve. Then the Frenet

frame satisfies the following system of ordinary differential equations.




Ṫ (s)

Ṅ(s)

Ḃ(s)



 =





0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0









T (s)
N(s)
B(s)



 .

Proof. The first equation is a direct consequence of the definition
of the curvature

Ṫ (s) = γ̈(s) = |γ̈(s)| · N = κ(s) · N(s).
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We get the second equation from

〈Ṅ(s), T (s)〉 =
d

ds
〈N(s), T (s)〉 − 〈N(s), Ṫ (s)〉

= 〈 γ̈(s)

|γ̈(s)| , γ̈(s)〉

= κ(s),

2〈Ṅ(s), N(s)〉 =
d

ds
〈N(s), N(s)〉 = 0

and

〈Ṅ(s), B(s)〉 =
d

ds
〈N(s), B(s)〉 − 〈N(s), Ḃ(s)〉 = τ(s).

When differentiating B(s) = T (s) × N(s) we obtain

Ḃ(s) = Ṫ (s) × N(s) + T (s) × Ṅ(s)

= κ(s) · N(s) × N(s) + T (s) × Ṅ(s)

hence 〈Ḃ(s), T (s)〉 = 0. The definition of the torsion

〈Ḃ(s), N(s)〉 = −〈B(s), Ṅ(s)〉 = −τ(s)

and the fact

2 〈Ḃ(s), B(s)〉 =
d

ds
〈B(s), B(s)〉 = 0

give us the third and last equation. ¤

Theorem 3.9. Let γ : I → R
3 be a Frenet curve. Then its torsion

τ : I → R vanishes identically if and only if the geometric curve γ(I)
is contained in a plane.

Proof. It follows from the third Frenet equation that if the torsion
vanishes identically then

d

ds
〈γ(s) − γ(0), B(s)〉 = 〈T (s), B(s)〉 = 0.

Because 〈γ(0) − γ(0), B(0)〉 = 0 if follows that 〈γ(s) − γ(0), B(s)〉 = 0
for all s ∈ I. This means that γ(s) lies in a plane containing γ(0) with
constant normal B(s).

Let us now assume that the geometric curve γ(I) is contained in a
plane i.e. there exists a point p ∈ R

3 and a normal n ∈ R
3 \ {0} to the

plane such that
〈γ(s) − p, n〉 = 0

for all s ∈ I. When differentiating we get

〈T (s), n〉 = 〈γ̇(s), n〉 = 0
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and
〈γ̈(s), n〉 = 0

so 〈N(s), n〉 = 0. This means that n is a constant multiple of B(s). so
B′(0) = 0 and hence τ ≡ 0. ¤

The following result is called the fundamental theorem of curve

theory. It tells us that a Frenet curve is, up to Euclidean motions,
completely determined by its the curvature and the torsion.

Theorem 3.10. Let κ : I → R
+ and τ : I → R be two differentiable

functions. Then there exists a Frenet curve γ : I → R
3 with curvature

κ and torsion τ . If γ̃ : I → R
3 is another such curve, then there exists

an orthogonal matrix A ∈ O(3) and an element p ∈ R
3 such that

γ(s) = A · γ̃(s) + p.

Proof. The proof is based on the well-known theorem of Picard-

Lindelöf formulated here as Fact 3.11, see Exercise 3.6. ¤

Fact 3.11. Let f : U → R
n be a continuous map defined on an

open subset U of R × R
n and L ∈ R

+ such that

|f(t, x) − f(t, y)| ≤ L · |x − y|
for all (t, x), (t, y) ∈ U . If (t0, x0) ∈ U then there exists a unique local

solution x : I → R
n to the following initial value problem

x′(t) = f(t, x(t)), x(t0) = x0.

Definition 3.12. Let γ : I → R
3 be a regular curve in R

3 not
necessarily parametrized by arclength. Let t : J → I be a C3-function
such that the composition α = γ ◦ t : J → R

3 is a curve parametrized
by arclength. Then we define the curvature κ : I → R

+ of γ : I → R
3

by
κ(t(s)) = κ̃(s),

where κ̃ : J → R
+ is the curvature of α. In the same manner we define

the torsion τ : I → R of γ by

τ(t(s)) = τ̃(s),

where τ̃ : J → R is the torsion of α.

We are now interested in deriving formulae for τ and κ in terms of
γ. By differentiating γ(t) = α(s(t)) we get

γ′(t) = α̇(s(t)) · s′(t),

〈γ′(t), γ′(t)〉 = s′(t)2〈α̇(s(t)), α̇(s(t))〉 = s′(t)2
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and

2〈γ′′(t), γ′(t)〉 =
d

dt
(s′(t)2) = 2 · s′(t) · s′′(t).

When differentiating once more we yield

s′(t) · α̈(s(t)) =
s′(t) · γ′′(t) − s′′(t) · γ′(t)

s′(t)2
,

α̈(s(t)) =
s′(t)2 · γ′′(t) − s′(t) · s′′(t) · γ′(t)

s′(t)4

=
γ′′(t)〈γ′(t), γ′(t)〉 − γ′(t)〈γ′′(t), γ′(t)〉

|γ′(t)|4

=
γ′(t) × (γ′′(t) × γ′(t))

|γ′(t)|4 .

Finally we get a formula for the curvature of γ : I → R
3 by

κ(t) = κ̃(s(t))

= |α̈(s(t))|

=
|γ′(t)| · |γ′′(t) × γ′(t)|

|γ′(t)|4

=
|γ′(t) × γ′′(t)|

|γ′(t)|3 .

Proposition 3.13. Let γ : I → R
3 be a regular curve in R

3 its

curvature κ and torsion τ satisfy

κ(t) =
|γ′(t) × γ′′(t)|

|γ′(t)|3 ,

τ(t) =
det[γ′(t), γ′′(t), γ′′′(t)]

|γ′(t) × γ′′(t))|2 .

Proof. We have already proven the first equation. For the second
one, see Exercise 3.5. ¤

Corollary 3.14. Let γ : I → R
3 be a regular curve in R

3. Then

(1) the geometric curve γ(I) is contained in a line if and only if

γ′(t) and γ′′(t) are linearly dependent for all t ∈ I,
(2) the geometric curve γ(I) is contained in a plane if and only if

γ′(t), γ′′(t) and γ′′′(t) are linearly dependent for all t ∈ I.

Proof. The statement is a direct consequence of Theorem 3.5,
Theorem 3.9 and Proposition 3.13. ¤
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Exercises

Exercise 3.1. Calculate the curvature κ and the torsion τ of the
helix parametrized by γ : R → R

3,

γ : t 7→ (r · cos t, r · sin t, b · t)
with r, b ∈ R

+.

Exercise 3.2. Construct a regular curve γ : R → R
3 with constant

curvature κ ∈ R
+ and constant torsion τ ∈ R.

Exercise 3.3. Prove that the curve γ : (−π/2, π/2) → R
3 with

γ : t 7→ (2 cos2 t − 3, sin t − 8, 3 sin2 t + 4)

is regular. Determine whether the image of γ is contained in

ii) a straight line in R
3 or not,

i) a plane in R
3 or not.

Exercise 3.4. Show that the curve γ : R → R
3 given by

γ(t) = (t3 + t2 + 3, t3 − t + 1, t2 + t + 1)

is regular. Determine whether the image of γ is contained in

ii) a straight line in R
3 or not,

i) a plane in R
3 or not.

Exercise 3.5. Prove the torsion formula in Proposition 3.13.

Exercise 3.6. Use your local library to find a proof of Theorem
3.10.

Exercise 3.7. Let γ : R → R
3 be a regular map parametrizing a

closed curve in R
3 by arclength. Use your local library to find a proof

of Fenchel’s theorem i.e.

L(γ̇) =

∫ L

0

κ(s)ds ≥ 2π,

where L is the period of γ.



CHAPTER 4

Surfaces in the Euclidean space R
3

In this chapter we introduce the notion of a regular surface in three
dimensional Euclidean space. We give several examples of surfaces and
study differentiable maps between them.

Definition 4.1. A non-empty subset M of R
3 is said to be a reg-

ular surface if for each point p ∈ M there exist open neighbourhoods
V in R

3 and U in R
2 and a bijective C∞-map X : U → V ∩ M , such

that X is a homeomorphism and

Xu(q) × Xv(q) 6= 0.

for all q ∈ U . The map X : U → V ∩ M is said to be a local

parametrization of M and the inverse X−1 : V ∩ M → U a local

chart or local coordinates on M . An atlas on M is a collection

A = {(Vα ∩ M,X−1
α )| α ∈ I}

of local charts on M such that A covers the whole of M i.e.

M =
⋃

α

(Vα ∩ M).

Example 4.2. Let f : U → R be a differentiable function from an
open subset U of R

2. Then X : U → M with

X : (u, v) 7→ (u, v, f(u, v))

is a local parametrization of the graph

M = {(u, v, f(u, v))| (u, v) ∈ U}
of f . The corresponding local chart X−1 : M → U is given by

X−1 : (x, y.z) 7→ (x, y).

Example 4.3. Let S2 denote the unit sphere in R
3 given by

S2 = {(x, y, z) ∈ R
3| x2 + y2 + z2 = 1}.

Let N be the north pole N = (0, 0, 1) and S be the south pole S =
(0, 0,−1) on S2, respectively. Put UN = S3 \ {N}, US = S3 \ {S} and
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define xN : UN → R
2, xS : US → R

2 by

xN : (x, y, z) 7→ 1

1 − z
(x, y),

xS : (x, y, z) 7→ 1

1 + z
(x, y).

Then A = {(UN , xN), (US, xS)} is an atlas on S2.

Our next important step is to prove the implicit function theorem
which is a useful tool for constructing surfaces in R

3. For this we use
the classical inverse mapping theorem stated below. Note that if

F : U → R
m

is a differentiable map defined on an open subset U of R
n then its

differential dF (p) : R
n → R

m at a point p ∈ U is a linear map given by
the m × n matrix

dF (p) =





∂F1/∂x1(p) . . . ∂F1/∂xn(p)
...

...
∂Fm/∂x1(p) . . . ∂Fm/∂xn(p)



 .

If γ : R → U is a curve in U such that γ(0) = p and γ̇(0) = Z then
the composition F ◦ γ : R → R

m is a curve in R
m and according to the

chain rule we have

dF (p) · Z =
d

dt
(F ◦ γ(t))|t=0,

which is the tangent vector of the curve F ◦ γ at F (p) ∈ R
m.

Hence the differential dF (p) can be seen as a linear map

mapping tangent vectors at p ∈ U to tangent vectors at the

image F (p) ∈ R
m. We shall later generalize this to the surface

setting.

The following fact is the classical inverse mapping theorem.

Fact 4.4. Let U be an open subset of R
n and F : U → R

n be a

differentiable map. If p ∈ U and the differential

dF (p) : R
n → R

n

of F at p is invertible then there exist open neighbourhoods Up around

p and Uq around q = F (p) such that f = F |Up
: Up → Uq is bijective
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and the inverse f−1 : Uq → Up is a differentiable map. The differential

df−1(q) of f−1 at q satisfies

df−1(q) = (dF (p))−1

i.e. it is the inverse of the differential dF (p) of F at p.

Before stating the implicit function theorem we remind the reader
of the following notions.

Definition 4.5. Let m,n be positive integers, U be an open subset
of R

n and F : U → R
m be a differentiable map. A point p ∈ U is said

to be critical for F if the differential

dF (p) : R
n → R

m

is not of full rank, and regular if it is not critical. A point q ∈ F (U)
is said to be a regular value of F if every point of the pre-image
F−1({q}) of q is regular and a critical value otherwise.

Note that if n ≥ m then p ∈ U is a regular point of

F = (F1, . . . , Fm) : U → R
m

if and only if the gradients ∇F1, . . . ,∇Fm of the coordinate functions
F1, . . . , Fm : U → R are linearly independent at p, or equivalently, the
differential dF (p) of F at p satisfies the following condition

det(dF (p) · (dF (p))t) 6= 0.

The following important result is often called the implicit function
theorem.

Theorem 4.6. Let f : U → R be a differentiable function defined

on an open subset U of R
3 and q be a regular value of f i.e.

(∇f)(p) 6= 0

for all p in M = f−1({q}). Then M is a regular surface in R
3.

Proof. Let p be an arbitrary element of M . The gradient ∇f(p)
at p is non-zero so we can, without loss of generality, assume that
fz(p) 6= 0. Then define the map F : U → R

3 by

F (x, y, z) 7→ (x, y, f(x, y, z)).

Its differential dF (p) at p satisfies

dF (p) =





1 0 0
0 1 0
fx fy fz



 ,
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so the determinant det dF (p) = fz is non-zero. Following the inverse
mapping theorem there exist open neighbourhoods V around p and
W around F (p) such that the restriction F |V : V → W of F to V is
invertible. The inverse (F |V )−1 : W → V is differentiable of the form

(u, v, t) 7→ (u, v, g(u, v, t)),

where g is a real-valued function on W . It follows that the restriction

X = F−1|Ŵ : Ŵ → R
3

to the planar set

Ŵ = {(u, v, t) ∈ W | t = q}
is differentiable, so X : Ŵ → V ∩ M is a local parametrization of the
open neighbourhood V ∩ M around p. Since p was chosen arbitrarily
we have shown that M is a regular surface in R

3. ¤

We shall now apply the implicit function theorem to construct ex-
amples of regular surfaces in R

3.

Example 4.7. Let f : R
3 → R be the differentiable function given

by
f(x, y, z) = x2 + y2 + z2.

The gradient ∇f(p) of f at p satisfies ∇f(p) = 2p, so each positive
real number is a regular value for f . This means that the sphere

S2
r = {(x, y, z) ∈ R

3| x2 + y2 + z2 = r2} = f−1({r2})
of radius r is a regular surface in R

3.

Example 4.8. Let r, R be real numbers such that 0 < r < R and
define the differentiable function

f : U = {(x, y, z) ∈ R
3| x2 + y2 6= 0} → R

by

f(x, y, z) = z2 + (
√

x2 + y2 − R)2

and let T 2 be the pre-image

f−1({r2}) = {(x, y, z) ∈ U | z2 + (
√

x2 + y2 − R)2 = r2}.
The gradient ∇f of f at p = (x, y, z) satisfies

∇f(p) =
2

√

x2 + y2
(x(

√

x2 + y2 − R), y(
√

x2 + y2 − R), z
√

x2 + y2).

If p ∈ T 2 and ∇f(p) = 0 then z = 0 and

∇f(p) =
2r

√

x2 + y2
(x, y, 0) 6= 0.
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This contradiction shows that r2 is a regular value for f and that the
torus T 2 is a regular surface in R

3.

Definition 4.9. A differentiable map X : U → R
3 from an open

subset U of R
2 is said to be a regular parametrized surface in R

3

if for each point q ∈ U

Xu(q) × Xv(q) 6= 0.

Definition 4.10. Let M be a regular surface in R
3. A differen-

tiable map X : U → M defined on an open subset of R
2 is said to

parametrize M if X is surjective and for each p in U there exists an
open neighbourhood Up of p such that X|Up

: Up → X(Up) is a local
parametrization of M .

Example 4.11. It is easily seen that the torus T 2 in Example 4.8
is obtained by rotating the circle

{(x, 0, z) ∈ R
3| z2 + (x − R)2 = r2}

in the (x, z)-plane around the z-axes. We can therefore parametrize
the torus by X : R

2 → T 2 with

X : (u, v) 7→





cos v − sin v 0
sin v cos v 0

0 0 1









R + r cos u
0

r sin u



 .

Example 4.12. Let γ = (r, 0, z) : I → R
3 be differentiable curve

in the (x, z)-plane such that r(s) > 0 and ṙ(s)2+ ż(s)2 = 1 for all s ∈ I.
By rotating the curve around the z-axes we obtain a regular surface

of revolution parametrized by X : I × R
2 → R

3 with

X(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









r(u)
0

z(u)



 =





r(u) cos v
r(u) sin v

z(u)



 .

The surface is regular because the vectors

Xu =





ṙ(u) cos v
ṙ(u) sin v

ż(u)



 , Xv =





−r(u) sin v
r(u) cos v

0





are linearly independent.

Definition 4.13. Let M be a regular surface in R
3. A continuous

map γ : I → M , defined on an open interval I of the real line, is said
to be a differentiable curve on M if it is differentiable as a map into
R

3.
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Definition 4.14. Let M be a regular surface in R
3. A real valued

function f : M → R on M is said to be differentiable if for each
local parametrization X : U → M of M the composition f ◦X : U → R

is differentiable.

Definition 4.15. A map φ : M1 → M2 between two regular sur-
faces in R

3 is said to be differentiable if for all local parametrizations
(U1, X1) on M1 and (U2, X2) on M2 the map

X−1
2 ◦ φ ◦ X1|U : U → R

2,

defined on the open subset U = X−1
1 (X1(U1) ∩ φ−1(X2(U2))) of R

2, is
differentiable.

The next very useful proposition generalizes a result from classical
real analysis of several variables.

Proposition 4.16. Let M1 and M2 be two regular surfaces in R
3.

Let φ : U → R
3 be a differentiable map defined on an open subset of R

3

such that M1 is contained in U and the image φ(M1) is contained in

M2. Then the restriction φ|M1
: M1 → M2 is differentiable map from

M1 to M2.

Proof. See Exercise 4.2. ¤

Example 4.17. We have earlier parametrized the torus

T 2 = {(x, y, z) ∈ U | z2 + (
√

x2 + y2 − R)2 = r2}
with the map X : R

2 → T 2 defined by

X : (u, v) 7→





cos v − sin v 0
sin v cos v 0

0 0 1









R + r cos u
0

r sin u



 .

Let us now map the torus into R
3 with the following formula





cos v − sin v 0
sin v cos v 0

0 0 1









cos u
0

sin u



 7→





cos v cos u
sin v cos u

sin u



 .

It is easy to see that this gives a well-defined map N : T 2 → S2 from
the torus to the unit sphere

S2 = {(x, y, z) ∈ R
3| x2 + y2 + z2 = 1}.

In the local coordinates (u, v) on the torus the map is given by

N(u, v) =





cos v cos u
sin v cos u

sin u



 .



4. SURFACES IN THE EUCLIDEAN SPACE R
3

27

It now follows from Proposition 4.16 that N : T 2 → S2 is differentiable.

Proposition 4.18. Let φ1 : M1 → M2 and φ2 : M2 → M3 be dif-

ferentiable maps between regular surfaces in R
3. Then the composition

φ2 ◦ φ1 : M1 → M3 is differentiable.

Proof. See Exercise 4.4. ¤

Definition 4.19. Two regular surfaces M1 and M2 in R
3 are said

to be diffeomorphic if there exists a bijective differentiable map φ :
M1 → M2 such that the inverse φ−1 : M2 → M1 is differentiable. In
that case the map φ is said to be a diffeomorphism between M1 and
M2.
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Exercises

Exercise 4.1. Determine whether the following subsets of R
3 are

regular surface or not.

M1 = {(x, y, z) ∈ R
3| x2 + y2 = z},

M2 = {(x, y, z) ∈ R
3| x2 + y2 = z2},

M3 = {(x, y, z) ∈ R
3| x2 + y2 − z2 = 1},

M4 = {(x, y, z) ∈ R
3| x2 + y2 = cosh z},

M5 = {(x, y, z) ∈ R
3| x sin z = y cos z}.

Find a parametrization for those which are regular surfaces in R
3.

Exercise 4.2. Prove Proposition 4.16.

Exercise 4.3. Prove that the map φ : T 2 → S2 in Example 4.17 is
differentiable.

Exercise 4.4. Prove Proposition 4.18.

Exercise 4.5. Construct a diffeomorphism φ : S2 → M between
the unit sphere S2 and the ellipsoid

M = {(x, y, z) ∈ R
3| x2 + 2y2 + 3z2 = 1}.

Exercise 4.6. Let U = {(u, v) ∈ R
2| − π < u < π, 0 < v < 1},

define X : U → R
3 by X(u, v) = (sin u, sin 2u, v) and set M = X(U)

Sketch M and show that X is differentiable, regular and injective but
X−1 is not continuous. Is M a regular surface in R

3 ?



CHAPTER 5

The Tangent Plane

In this chapter we introduce the notion of the tangent plane at a
point of a regular surface. We show that this is a two dimensional
vector space. We then define the tangent map of a differentiable map
between surfaces.

Definition 5.1. Let M be a regular surface in R
3 and p be a point

on M . Then the tangent space TpM of M at p is the set of all
tangents γ̇(0) to C1-curves γ : I → M such that γ(0) = p.

Let M be a regular surface in R
3, p ∈ M and X : U → M be a local

parametrization of M such that 0 ∈ U and X(0) = p. Let α : I → U
be a C1-curve in U such that 0 ∈ I and α(0) = 0 ∈ U . Then the
composition γ = X ◦ α : I → X(U) is a C1-curve in X(U) such that
γ(0) = p. Since X : U → X(U) is a homeomorphism it is clear that
any curve in X(U) with γ(0) = p can be obtained this way.

It follows from the chain rule that the tangent γ̇(0) of γ : I → M
at p satisfies

γ̇(0) = dX(0) · α̇(0),

where dX(0) : R
2 → R

3 is the differential of the local parametrization
X : U → M . The differential is a linear map and the condition

Xu × Xv 6= 0

implies that dX(0) is of full rank i.e. the vectors

Xu = dX(0) · e1 and Xv = dX(0) · e2

are linearly independent. This shows that the image

{dX(0) · Z| Z ∈ R
2}

of dX(0) is a two dimensional subspace of R
3. If (a, b) ∈ R

2 then

dX(0) · (a, b) = dX(0) · (ae1 + be2)

= a dX(0) · e1 + b dX(0) · e2

= aXu + bXv.

29
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It is clear that TpM is the space of all tangents γ̇(0) to C1-curves
γ : I → M in M such that γ(0) = p. We have proved the following
result.

Proposition 5.2. Let M be a regular surface in R
3 and p be a point

on M . Then the tangent space TpM of M at p is a 2-dimensional real

vector space.

Example 5.3. Let γ : I → S2 be a curve into the unit sphere in
R

3 with γ(0) = p and γ̇(0) = Z. The curve satisfies

〈γ(t), γ(t)〉 = 1

and differentiation yields

〈γ̇(t), γ(t)〉 + 〈γ(t), γ̇(t)〉 = 0.

This means that 〈Z, p〉 = 0 so every tangent vector Z ∈ TpS
m must be

orthogonal to p. On the other hand if Z 6= 0 satisfies 〈Z, p〉 = 0 then
γ : R → S2 with

γ : t 7→ cos(t|Z|) · p + sin(t|Z|) · Z/|Z|
is a curve into S2 with γ(0) = p and γ̇(0) = Z. This shows that the
tangent space TpS

2 is given by

TpS
2 = {Z ∈ R

3| 〈p, Z〉 = 0}.
Example 5.4. Let us parametrize the torus

T 2 = {(x, y, z) ∈ U | z2 + (
√

x2 + y2 − R)2 = r2}
by X : R

2 → T 2 with

X : (u, v) 7→





cos v − sin v 0
sin v cos v 0

0 0 1









R + r cos u
0

r sin u



 .

By differentiating we get a basis {Xv, Xu} for the tangent space TpT
2

at p = X(u, v) with

Xu = −r





cos v sin u
sin v sin u

cos u



 , Xv = (R + r cos u)





− sin v
cos v

0



 .

Proposition 5.5. Let M1 and M2 be two regular surfaces in R
3,

p ∈ M1, q ∈ M2 and φ : M1 → M2 be a differentiable map with

φ(p) = q. Then the formula

dφ(p) : γ̇(0) 7→ d

dt

(

φ ◦ γ(t)
)

|t=0
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determines a well-defined linear map dφ(p) : TpM1 → TqM2. Here

γ : I → M1 is any C1-curve satisfying γ(0) = p,

Proof. Let X : U → M1 and Y : V → M2 be local parametriza-
tions such that X(0) = p, Y (0) = q and φ(X(U)) contained in Y (V ).
Then define

F = Y −1 ◦ φ ◦ X : U → R
2

and let α : I → X be a C1-curve with α(0) = 0 and α̇(0) = (a, b) ∈ R
2.

If
γ = X ◦ α : I → X(U)

then γ(0) = p and

γ̇(0) = dX(0) · (a, b) = aXu + bXv.

The image curve φ ◦ γ : I → Y (V ) is given by φ ◦ γ = Y ◦ F ◦ α so the
chain rule implies that

d

dt

(

φ ◦ γ(t)
)

|t=0
= dY (F (0)) · dF (0) · α̇(0)

= dY (0) · d

dt

(

F ◦ α(t)
)

|t=0
.

This means that dφ(p) : TpM1 → TqM2 is given by

dφ(p) : (aXu + bXv) 7→ dY (F (0)) · dF (0) · (a, b)

and hence clearly linear. ¤

Definition 5.6. Let M1 and M2 be two regular surfaces in R
3,

p ∈ M1, q ∈ M2 and φ : M1 → M2 be a differentiable map such that
φ(p) = q. The map dφ(p) : TpM1 → TqM2 is called the differential or
the tangent map of φ at p.

The classical inverse mapping theorem generalizes to the surface
setting as follows.

Theorem 5.7. Let φ : M1 → M2 be a differentiable map between

surfaces in R
3. If p is a point in M , q = φ(p) and the differential

dφ(p) : TpM1 → Tφ(p)M2

is bijective then there exist open neighborhoods Up around p and Uq

around q such that φ|Up
: Up → Uq is bijective and the inverse (φ|Up

)−1 :
Uq → Up is differentiable.

Proof. See Exercise 5.1 ¤
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Exercises

Exercise 5.1. Find a proof for Theorem 5.7



CHAPTER 6

The First Fundamental Form

In this chapter we introduce the first fundamental form of a regular
surface. This enables us to measure angles between tangent vectors,
lengths of curves and even distances between points on the surface.

Definition 6.1. Let M be a regular surface in R
3 and p ∈ M .

Then we define the first fundamental form Ip : TpM × TpM → R of
M at p by

Ip(Z,W ) = 〈Z,W 〉,
where 〈·, ·〉 is the Euclidean scalar product in R

3 restricted to the tan-
gent space TpM of M at p. Properties of the surface which only depend
on its first fundamental form are called inner properties.

Definition 6.2. Let M be a regular surface in R
3 and γ : I → M

be a C1-curve in M . Then the length L(γ) of γ is defined by

L(γ) =

∫

I

√

〈γ̇(t), γ̇(t)〉dt.

As we shall now see a regular surface in R
3 has a natural distance

function d. This gives (M,d) the structure of a metric space.

Proposition 6.3. Let M be a regular surface in R
3. For two points

p, q ∈ M let Cpq denote the set of C1-curves γ : [0, 1] → M such that

γ(0) = p and γ(1) = q and define the function d : M × M → R
+
0 by

d(p, q) = inf{L(γ)| γ ∈ Cpq}.
Then (M,d) is a metric space i.e. for all p, q, r ∈ M we have

(i) d(p, q) ≥ 0,
(ii) d(p, q) = 0 if and only if p = q,
(iii) d(p, q) = d(q, p),
(iv) d(p, q) ≤ d(p, r) + d(r, q).

Proof. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). ¤

Definition 6.4. A differentiable map φ : M1 → M2 between two
regular surfaces in R

3 is said to be isometric if for each p ∈ M the

33
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differential dφ(p) : TpM → Tφ(p)M preserves the first fundamental
forms of the surfaces involved i.e.

〈Z,W 〉 = 〈dφ(p) · Z, dφ(p) · W 〉
for all Z,W ∈ TpM . An isometric diffeomorphism φ : M1 → M2 is
said to be an isometry. Two regular surfaces M1 and M2 are said to
isometric if there exists an isometry φ : M1 → M2 between them.

Definition 6.5. A differentiable map φ : M1 → M2 between two
regular surfaces in R

3 is said to be conformal if there exists a differ-
entiable function λ : M1 → R such that for each p ∈ M the differential
dφ(p) : TpM → Tφ(p)M satisfies

〈dφ(p) · Z, dφ(p) · W 〉 = e2λ〈Z,W 〉
for all Z,W ∈ TpM . Two regular surfaces M1 and M2 are said to
conformally equivalent if there exists a conformal diffeomorphism
φ : M1 → M2 between them.

Let M be a regular surface in R
3 and X : U → M be a local

parametrization of M . At each point X(u, v) in X(U) the tangent
space is generated by the vectors Xu(u, v) and Xv(u, v). For these we
define the matrix-valued map [dX] : U → R

2×3 by

[dX] = [Xu, Xv]
t

and the real-valued functions E,F,G : U → R by the symmetric matrix
(

E F
F G

)

= [dX] · [dX]t.

containing the scalar products.

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 = 〈Xv, Xu〉 and G = 〈Xv, Xv〉.
This induces a so called metric

ds2 = Edu2 + 2Fdudv + Gdv2

on the parameter region U as follows: For each point q ∈ U we have a
scalar product ds2

q : R
2 × R

2 → R defined by

ds2
q(z, w) = zt

(

E(q) F (q)
F (q) G(q)

)

w.

Let α1 = (u1, v1) : I → U and α2 = (u2, v2) : I → U be two curves in U
meeting at α1(0) = q = α2(0). Further let γ1 = X ◦α1 and γ2 = X ◦α2

be the image curves in X(U) meeting at γ1(0) = p = γ2(0). Then the
differential dX(q) is given by

dX(q) : (a, b) 7→ aXu(q) + bXv(q)
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so at q we have

ds2
q(α̇1, α̇2) = α̇t

1

(

E F
F G

)

α̇2

= Eu̇1u̇2 + F (u̇1v̇2 + u̇2v̇1) + Gv̇1v̇2

= 〈u̇1Xu + v̇1Xv, u̇2Xu + v̇2Xv〉
= 〈dX · α̇1, dX · α̇2〉
= 〈γ̇1, γ̇2〉.

The above calculations show that the diffeomorphism X : U →
X(U) preserves the scalar products so it is actually an isometry. It
follows that the length of a curve α : I → U in U is exactly the same
as the length of the corresponding curve X ◦ α in X(U). We have
”pulled back” the first fundamental form on the surface X(U) to a
metric on U .

Definition 6.6. Let M be a regular surface in R
3 and X : U → M

be a local parametrization of M where U is a measurable subset of the
plane R

2. Then we define the area of X(U) by

A(X(U)) =

∫

U

√
EG − F 2dudv.
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Exercises

Exercise 6.1. Calculate the first fundamental form of the para-
metrized surface by X : R

+ × R → M with

Xα(r, θ) = (r sin α cos(
θ

sin α
), r sin α sin(

θ

sin α
), r cos α).

Find an equation of the form f(x, y, z) = 0 describing the surface.

Exercise 6.2. Find an isometric parametrization X : R
2 → M of

the circular cylinder

M = {(x, y, z) ∈ R
3| x2 + y2 = 1}.

Exercise 6.3. Let M be the unit sphere S2 with the two poles
removed. Prove that Mercator’s parametrization X : R2 → M of M
with

X(u, v) = (
cos v

cosh u
,

sin v

cosh u
,
sinh v

cosh u
)

is conformal.

Exercise 6.4. Prove that the first fundamental form of a regular
surface M in R

3 is invariant under Euclidean motions.

Exercise 6.5. Let X,Y : R
2 → R

3 be the parametrized surfaces
given by

X(u, v) = (cosh u cos v, cosh u sin v, u),

Y (u, v) = (sinh u cos v, sinh u sin v, v)

and for each θ ∈ R define Zθ : R
2 → R

3 by

Zθ(u, v) = cos θ · X(u, v) + sin θ · Y (u, v).

Calculate the first fundamental form of Zθ. Find equations of the form
f(x, y, z) = 0 describing the surfaces X = Z0 and Y = Zπ/2. Compare
with Exercise 4.1.

Exercise 6.6. Calculate the area A(T 2) of the torus

T 2 = {(x, y, z) ∈ U | z2 + (
√

x2 + y2 − R)2 = r2}.



CHAPTER 7

Curvature

In this chapter we define the shape operator of an orientable surface
and its second fundamental form. These measure the behaviour of the
normal of the surface and lead us to the notions of normal curvature,
Gaussian curvature and mean curvature.

Definition 7.1. Let M be a regular surface in R
3. A differentiable

map N : M → S2 with values in the unit sphere is said to be a Gauss

map for M if for each point p ∈ M the image N(p) is perpendicular
to the tangent space TpM . The surface M is said to be orientable if
such a Gauss map exists. A surface M equipped with a Gauss map is
said to be oriented.

Let M be an oriented regular surface in R
3 with Gauss map N :

M → S2 and γ : I → M be a curve on M parametrized by arclength
such that γ(0) = p and γ̇(0) = Z. At the point p the second derivative
γ̈(0) has a natural decomposition

γ̈(0) = γ̈(0)tan + γ̈(0)norm

into its tangential part, contained in TpM , and its normal part in the
orthogonal complement TpM

⊥.
Along the curve the normal N(γ(s)) is perpendicular to the tangent

γ̇(s) so for the normal part of γ̈(0) we have

γ̈(0)norm = 〈γ̈(0), N(p)〉N(p)

= −〈γ̇(0), dN(p) · γ̇(0)〉N(p)

= −〈Z, dN(p) · Z〉N(p).

This implies that the normal component γ̈(0)norm is completely deter-
mined by the value of γ̇(0) and the values of the Gauss map along any
curve through p with tangent γ̇(0) = Z at p.

If N : M → S2 is a Gauss map for a regular surface M and p ∈ M ,
then N(p) is a unit normal to both the tangent planes TpM and TN(p)S

2

so we can make the identification TpM ∼= TN(p)S
2.

37
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Definition 7.2. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and p ∈ M . Then the shape operator

Sp : TpM → TpM

of M at p is the linear endomorphism given by

Sp(Z) = −dN(p) · Z
for all Z ∈ TpM .

Proposition 7.3. Let M be an oriented regular surface with Gauss

map N : M → S2 and p ∈ M . Then the shape operator Sp : TpM →
TpM is symmetric i.e.

〈Sp(Z),W 〉 = 〈Z, Sp(W )〉
for all Z,W ∈ TpM .

Proof. Let X : U → M be a local parametrization of M such
that X(0) = p and N : X(U) → S2 be the Gauss map on X(U) given

N(u, v) =
Xu(u, v) × Xv(u, v)

|Xu(u, v) × Xv(u, v)| .

The vector N ◦ X(u, v) is orthogonal to the tangent plane TpM so

0 =
d

dv
〈N ◦ X,Xu〉 = 〈dN(p) · Xv, Xu〉 + 〈N ◦ X,Xvu〉

and

0 =
d

du
〈N ◦ X,Xv〉 = 〈dN(p) · Xu, Xv〉 + 〈N ◦ X,Xuv〉

By subtracting the second equation from the first one and employing
the fact that Xuv = Xvu we yield

〈dN(p) · Xv, Xu〉 = 〈Xv, dN(p) · Xu〉.
The symmetry of the linear endomorphism dN(p) : TpM → TpM is
a direct consequence of this last equation and the following obvious
relations

〈dN(p) · Xu, Xu〉 = 〈Xu, dN(p) · Xu〉,
〈dN(p) · Xv, Xv〉 = 〈Xv, dN(p) · Xv〉.

The statement follows from the fact that Sp = −dN(p). ¤

Corollary 7.4. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and p ∈ M . Then there exists an orthonormal

basis {Z1, Z2} for the tangent plane TpM such that

Sp(Z1) = λ1Z1 and Sp(Z2) = λ2Z2,

for some λ1, λ2 ∈ R.
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Definition 7.5. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and p ∈ M . Then we define the second

fundamental form IIp : TpM × TpM → R of M at p by

IIp(Z,W ) = 〈Sp(Z),W 〉.

It is an immediate consequence of Corollary 7.4 that the second
fundamental form is symmetric and clearly bilinear.

Definition 7.6. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2, p ∈ M and Z ∈ TpM . Then the normal

curvature kp(Z) of M at p in the direction of Z is defined by

kp(Z) = 〈γ̈(0), N(p)〉,
where γ : I → M is any curve parametrized by arclength such that
γ(0) = p and γ̇(0) = Z.

Proposition 7.7. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2, p ∈ M and Z ∈ TpM . Then the normal

curvature kp(Z) of M at p in the direction of Z satisfies

kp(Z) = 〈Sp(Z), Z〉 = IIp(Z,Z).

Proof. Let γ be a curve parametrized by arclength such that
γ(0) = p and γ̇(0) = Z. Along the curve the normal N(γ(t)) is per-
pendicular to the tangent γ̇(t). This means that

0 =
d

dt
(〈γ̇, N(γ(t))〉

= 〈γ̈(t), N(γ(t))〉 + 〈γ̇(t), dN(γ(t)) · γ̇(t)〉.
As a direct consequence we get

kp(Z) = 〈γ̈(0), N(p)〉
= −〈Z, dN(p) · Z〉
= 〈Sp(Z), Z〉.

¤

For an oriented regular surface M with Gauss map N : M → S2

and p ∈ M let T 1
p M be the unit circle in the tangent plane TpM i.e.

T 1
p M = {Z ∈ TpM | |Z| = 1}.

Then define the real-valued function kp : T 1
p M → R by

kp : Z 7→ kp(Z).
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The unit circle is compact and kp is continuous so there exist two
directions Z1, Z2 ∈ T 1

p M such that

k1(p) = kp(Z1) = max
Z∈T 1

p M
kp(Z)

and
k2(p) = kp(Z2) = min

Z∈T 1
p M

kp(Z).

These are called principal directions at p and k1(p), k2(p) the corre-
sponding principal curvatures. A point p ∈ M is said to be umbilic

if k1(p) = k2(p).

Theorem 7.8. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and p ∈ M . Then Z ∈ T 1
p M is a principal

direction at p if and only if it is an eigenvector for the shape operator

Sp : TpM → TpM .

Proof. Let {Z1, Z2} be an orthonormal basis for the tangent space
TpM of eigenvectors to Sp i.e.

Sp(Z1) = λ1Z1 and Sp(Z2) = λ2Z2

for some λ1, λ2 ∈ R. Then every unit vector Z ∈ T 1
p M can be written

as
Z(θ) = cos θZ1 + sin θZ2

and

kp(Z(θ)) = 〈Sp(cos θZ1 + sin θZ2), cos θZ1 + sin θZ2〉
= cos2 θ〈Sp(Z1), Z1〉 + sin2 θ〈Sp(Z2), Z2〉

+ cos θ sin θ(〈Sp(Z1), Z2〉 + 〈Sp(Z2), Z1〉)
= λ1 cos2 θ + λ2 sin2 θ.

If λ1 = λ2 then kp(Z(θ)) = λ1 for all θ so any direction is both
principal and an eigenvector for the shape operator Sp.

If λ1 6= λ2, then we can assume, without loss of generality, that
λ1 > λ2. Then Z(θ) is the maximal principal direction if and only if
cos2 θ = 1 i.e. Z = ±Z1 and clearly the minimal pricipal direction if
and only if sin2 θ = 1 i.e. Z = ±Z2. ¤

Definition 7.9. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2. Then we define the Gaussian curvature

K : M → R and the mean curvature H : M → R by

K(p) = det Sp and H(p) =
1

2
trace Sp,

respectively. The surface M is said to be flat if K(p) = 0 for all p ∈ M
and minimal if H(p) = 0 for all p ∈ M .
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Theorem 7.10. Let M be a connected, oriented regular surface in

R
3 with Gauss map N : M → S2. Then the shape operator Sp : TpM →

TpM vanishes for all p ∈ M if and only if M is contained in a plane.

Proof. If M is contained in a plane, then the Gauss map is con-
stant so the shape operator Sp = −dN(p) = 0 at any point p ∈ M .

Fix a point p ∈ M , let q be an arbitrary point on M and γ : I → M
be a curve such that γ(0) = q and γ(1) = p. Then the real-valued
function fq : I → R with

fq(t) = 〈q − γ(t), N(γ(t))〉
safisfies fq(0) = 0 and

ḟq(t) = −〈γ̇, N(γ(t))〉 + 〈q − γ(t), dN(p) · γ̇(t)〉 = 0.

This implies that 〈q − γ(t), N(γ(t))〉 = 0 for all t ∈ I. Hence

〈(q − p), N(p)〉 = 0

for all q ∈ M so the surface is contained in the plain through p with
normal N(p). ¤

Let M be an oriented surface in R
3 with Gauss map N : M → S2.

Let X : U → M be a local parametrization such that X(0) = p ∈ M .
Then the tangent space TpM ∼= TN(p)S

2 is generated by Xu and Xv so
there exists a symmetric matrix

A =

(

a11 a12

a21 a22

)

∈ R
2×2

such that the shape operator Sp : TpM → TpM satisfies

Sp(aXu + bXv) = aSp(Xu) + bSp(Xv)

= a(a11Xu + a21Xv) + b(a12Xu + a22Xv)

= (a11aXu + a12b)Xu + (a21a + a22b)Xv.

This means that with respect to the basis {Xu, Xv} we have

Sp :

(

a
b

)

7→
(

a11 a12

a21 a22

)

·
(

a
b

)

Let [dX], [dN ] : U → R
2×3 be given by

[dX] = [Xu, Xv]
t and [dN ] = [Nu, Nv]

t.

Then the definition Sp = −dN(p) of the shape operator gives

−[dN ] = A · [dX].
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Associated to the local parametrization X : U → M we have the
functions e, f, g : U → R given by

(

e f
f g

)

= −[dN ] · [dX]t

= A · [dX] · [dX]t

= A ·
(

E F
F G

)

.

We now obtain the matrix A for the shape operator Sp by

A =

(

e f
f g

)

·
(

E F
F G

)−1

=
1

EG − F 2

(

e f
f g

)

·
(

G −F
−F E

)

.

This implies that the Gaussian curvature K and the mean curvature
H satisfy

K =
eg − f 2

EG − F 2
and H =

1

2

eG − 2fF + gE

EG − F 2
.

Example 7.11. Let γ = (r, 0, z) : I → R
3 be a differentiable curve

in the (x, z)-plane such that r(s) > 0 and ṙ(s)2+ ż(s)2 = 1 for all s ∈ I.
Then X : I × R

2 → R
3 with

X(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









r(u)
0

z(u)



 =





r(u) cos v
r(u) sin v

z(u)





parametrizes a regular surface of revolution M . The linearly indepen-
dent tangent vectors

Xu =





ṙ(u) cos v
ṙ(u) sin v

ż(u)



 , Xv =





−r(u) sin v
r(u) cos v

0





generate a Gauss map

N(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









−ż(u)
0

ṙ(u)



 =





−ż(u) cos v
−ż(u) sin v

ṙ(u)



 .

[dX] =

(

ṙ(u) cos v ṙ(u) sin v ż(u)
−r(u) sin v r(u) cos v 0

)

(

E F
F G

)

= [dX] · [dX]t =

(

1 0
0 r(u)2

)
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(

e f
f g

)

= −[dN ] · [dX]t

=

(

−z̈(u) cos v −z̈(u) sin v r̈(u)
ż(u) sin v −ż(u) cos v 0

)

·





ṙ(u) cos v −r(u) sin v
ṙ(u) sin v r(u) cos v

ż(u) 0





=

(

r̈(u)ż(u) − z̈(u)ṙ(u) 0
0 −ż(u)r(u)

)

.

K =
eg − f 2

EG − F 2

=
ż(u)r(u)(z̈(u)ṙ(u) − r̈(u)ż(u))

r(u)2

=
ṙ(u)ż(u)z̈(u) − r̈(u)ż(u)2

ṙ(u)

=
ṙ(u)(−ṙ(u)r̈(u)) − r̈(u)(1 − ṙ(u)2)

ṙ(u)

= − r̈(u)

r(u)
.

Theorem 7.12. Let M be a connected oriented regular surface in

R
3 with Gauss map N : M → S2. If every point p ∈ M is an umbilic

point, then M is contained in a plane or in a sphere.

Proof. Let X : U → M be a local parametrization such that
U is connected. Since each point in X(U) is umbilic there exists a
differentiable function k : U → R such that the shape operator is given
by

Sp : (aXu + bXv) 7→ k(aXu + bXv)

so in particular

(N ◦ X)u = −kXu and (N ◦ X)v = −kXv.

Furthermore

0 = (N ◦ X)uv − (N ◦ X)vu

= −kvXu − kXuv + kuXv + kXuv

= −kvXu + kuXv.
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The vectors Xu and Xv are linearly independent so ku = kv = 0. The
domain U is connected which means that k is constant on U and hence
on the whole of M since M is connected.

If k = 0 then the shape operator vanishes so the surface is contained
in a plane. If k 6= 0 then we define Y : U → R

3 by

Y (u, v) = X(u, v) − 1

k
N(u, v).

Then

dY = dX − 1

k
dN = dX − 1

k
kdX = 0

so Y is constant and

|X − Y |2 =
1

k2

which implies that X(U) is contained in a sphere with centre Y and
radius 1/k. Since M is connected the whole of M is contained in the
same sphere. ¤

Theorem 7.13. Let M be a compact regular surface in R
3. Then

there exists at least one point p ∈ M such that the Gaussian curvature

K(p) is positive.

Proof. See Exercise 7.6. ¤
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Exercises

Exercise 7.1. Let U be an open subset of R
3 and q ∈ R be a

regular value of the differentiable function f : U → R. Prove that the
regular surface M = f−1({q}) in R

3 is orientable.

Exercise 7.2. Determine the Gaussian curvature and the mean
curvature of the parametrized Enneper surface

X(u, v) : (u − u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2).

Exercise 7.3. Determine the Gaussian curvature and the mean
curvature of the cateniod M parametrized by X : R × R

+ → R
3 with

X : (θ, r) 7→ (
1 + r2

2r
cos θ,

1 + r2

2r
sin θ, log r).

Find an equation of the form f(x, y, z) = 0 describing the surface M .
Compare with Exercise 6.5.

Exercise 7.4. Prove that the second fundamental form of an ori-
ented regular surface M in R

3 is invariant under Euclidean motions.

Exercise 7.5. Let X,Y : R
2 → R

3 be the parametrized surfaces
given by

X(u, v) = (cosh u cos v, cosh u sin v, u),

Y (u, v) = (sinh u cos v, sinh u sin v, v)

and for each θ ∈ R define Zθ : R
2 → R

3 by

Zθ(u, v) = cos θ · X(u, v) + sin θ · Y (u, v).

Calculate the principal curvatures k1, k2 of Zθ. Compare with Exercise
6.5.

Exercise 7.6. Prove Theorem 7.13.

Exercise 7.7. Let γ : R → R
3 be a regular curve, parametrized by

arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of γ, respectively. Let r be a positive real
number and assume that the r-tube M around γ given by X : R

2 → R
3

with

X(s, θ) 7→ γ(s) + r(cos θ · n(s) + sin θ · b(s))
is a regular surface in R

3. Determine the Gaussian curvature K of M
in terms of s, θ, r, κ(s) and τ(s).
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Exercise 7.8. Let M be a regular surface in R
3, p ∈ M and {Z,W}

be an orthonormal basis for TpM . Let kn(θ) be the normal curvature
of M at p in the direction of cos θZ + sin θW . Prove that the mean
curvature H satisfies

H(p) =
1

2π

∫ 2π

0

kn(θ)dθ.

Exercise 7.9. Let M be an oriented regular surface in R
3 with

Gauss map N → S2. Let X : U → M be a local parametrization of
M and A(N ◦ X(U)) be the area of the image N ◦ X(U) on the unit
sphere S2. Prove that

A(N ◦ X(U)) =

∫

X(U)

KdA,

where K is the Gaussian curvature of M . Compare with Exercise 3.7.

Exercise 7.10. Let a be a positive real number and U be the open
set

U = {(x, y, z) ∈ R
3| a(y2 + x2) < z}.

Prove that there does not exist a complete regular minimal surface M
in R

3 which is contained in U .

Exercise 7.11. Let X : U → R
3 be a regular parametrized surface

in R
3 with Gauss map N : M → S2 and principal curvatures k1 = 1/r1

and k2 = 1/r2. respectively. Let r ∈ R be such that Xr : U → R
3 with

Xr(u, v) = X(u, v) + r · N(u, v)

is a regular parametrized surface in R
3. Prove that the principal cur-

vatures of Xr satisfy

k1(r) =
1

(r1 − r)
and k2(r) =

1

(r2 − r)
.

Exercise 7.12. Let M be a connected surface in R
3 with Gaussian

curvatures K and mean curvature H satisfying
∫

M

H2dA =

∫

M

KdA.

Prove that if there exists a point p ∈ M such that K(p) > 0 then M is
a part of a sphere.



CHAPTER 8

Theorema Egregium

In the last chapter we defined the Gaussian curvature at a point of a
regular surface in R

3. For this we studied the second fundamental form
measuring the behaviour of a normal to the surface in a neighbourhood
of the point. In this chapter we prove Theorema Egregium which tells
us that the Gaussian curvature is actually completely determined by
the first fundamental form.

Theorem 8.1 (Theorema Egregium). Let M be a regular surface

in R
3. Then the Gaussian curvature K of M is determined by its first

fundamental form.

This remarkable result has an immediate consequence.

Corollary 8.2. It is impossible to construct a distance preserving

planar chart of the unit sphere S2.

Proof. If there exists a local parametrization X : U → S2 of the
unit sphere which was an isometry then the Gaussian curvature of the
flat plane and the unit sphere would be the same. But we know that
S2 has constant curvature K = 1. ¤

We shall now prove Theorem 8.1.

Proof. Let M be a surface and X : U → M be a local parametriza-
tion of M with first fundamental form determined by

(

E F
F G

)

= [dX] · [dX]t.

The set {Xu, Xv} is a basis for the tangent space at each point X(u, v)
in X(U). Applying the Gram-Schmidt process on this basis we yield
an orthonormal basis {Z,W} for the tangent space as follows:

Z =
Xu√
E

,

W̃ = Xv − 〈Xv, Z〉Z
47
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= Xv −
〈Xv, Xu〉Xu

〈Xu, Xu〉

= Xv −
F

E
Xu

and finally

W =
W̃

|W̃ |
=

√
E√

EG − F 2
(Xv −

F

E
Xu).

This means that there exist functions a, b, c : U → R only depending
on E,F,G such that

Z = aXu and W = bXu + cXv.

If we define a local Gauss map N : X(U) → S2 by

N = Xu × Xv

then {Z,W,N} is a positively oriented orthonormal basis for R
3 along

the open subset X(U) of M . This means that the derivatives

Zu, Zv,Wu,Wv

satisfy the following system of equations

Zu = 〈Zu, Z〉Z + 〈Zu,W 〉W + 〈Zu, N〉N,

Zv = 〈Zv, Z〉Z + 〈Zv,W 〉W + 〈Zv, N〉N,

Wu = 〈Wu, Z〉Z + 〈Wu,W 〉W + 〈Wu, N〉N,

Wu = 〈Wv, Z〉Z + 〈Wv,W 〉W + 〈Wv, N〉N.

Using the fact that {Z,W} is othonormal we can simplify to

Zu = 〈Zu,W 〉W + 〈Zu, N〉N,

Zv = 〈Zv,W 〉W + 〈Zv, N〉N,

Wu = 〈Wu, Z〉Z + 〈Wu, N〉N,

Wu = 〈Wv, Z〉Z + 〈Wv, N〉N.

The following shows that 〈Zu,W 〉 is a function of E,F,G : U → R and
their first order derivatives.

〈Zu,W 〉 = 〈(aXu)u,W 〉
= 〈auXu + aXuu, bXu + cXv〉
= aubE + aucF + ab〈Xuu, Xu〉 + ac〈Xuu, Xv〉

= aubE + aucF +
1

2
abEu + ac(Fu −

1

2
Ev)

and it is easy to see that the he same applies to 〈Zv,W 〉.
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Utilizing Lemma 8.3 we now yield

〈Zu,W 〉v − 〈Zv,W 〉u
= 〈Z,Wv〉u − 〈Z,Wu〉v
= 〈Zu,Wv〉 + 〈Z,Wuv〉 − 〈Zv,Wu〉 − 〈Z,Wvu〉
= 〈Zu,Wv〉 − 〈Zv,Wu〉
= K

√
EG − F 2.

Hence the Gaussian curvature K of M is given by

K =
〈Zu,W 〉v − 〈Zv,W 〉u√

EG − F 2

As an immediate consequence we see that K only depends on the func-
tions E,F,G and their first and second order derivatives and hence
completely determined by the first fundamental form of M . ¤

Lemma 8.3. For the above situation we have

〈Zu,Wv〉 − 〈Zu, Zv〉 = K
√

EG − F 2.

Proof. If A is the matrix for the shape operator in the basis
{Xu, Xv} then

−Nu = a11Xu + a21Xv and − Nv = a12Xu + a22Xv.

This implies that

〈Nu × Nv, N〉 = 〈K(Xu × Xv), N〉

=
ef − g2

EF − G2
〈(Xu × Xv), N〉

=
ef − g2

√
EF − G2

〈N,N〉

=
ef − g2

√
EF − G2

= K
√

EG − F 2.

We also have

〈Nu × Nv, N〉 = 〈Nu × Nv, Z × W 〉
= 〈Nu, Z〉〈Nv,W 〉 − 〈Nu,W 〉〈Nv, Z〉
= 〈Zu, N〉〈N,Wv〉 − 〈Wu, N〉〈N,Zv〉
= 〈Zu,Wv〉 − 〈Zu, Zv〉.

This proves the statement. ¤
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Exercises

Exercise 8.1. The parametrized surface X : R
+×R → M is given

by

Xα(r, θ) = (r sin α cos(
θ

sin α
), r sin α sin(

θ

sin α
), r cos α).

Calculate its Gaussian curvature K.

Exercise 8.2. Equip R
2 and R

4 with their standard Euclidean
scalar products. Prove that the parametrization X : R

2 → R
4,

X(u, v) = (cos u, sin u, cos v, sin v)

of the compact torus M in R
4 is isometric. What does this tell us about

the Gaussian curvature of M . Compare the result with Theorem 7.13.

Exercise 8.3. Let M be a regular surface in R
3 and X : U → M

be an orthogonal parametrization i.e. F = 0. Prove that the Gaussian
curvature satisfies

K = − 1

2
√

EG

(

(
Ev√
EG

)v + (
Gu√
EG

)u

)

.

Exercise 8.4. Let M be a regular surface in R
3 and X : U → M

be an isothermal parametrization i.e. F = 0 and E = G. Prove that
the Gaussian curvature satisfies

K = − 1

2E
((log E)uu + (log E)vv),

Determine the Gaussian curvature K in the cases when

E =
4

(1 + u2 + v2)2
, E =

4

(1 − u2 − v2)2
or E =

1

u2
.



CHAPTER 9

Geodesics

In this chapter we introduce the notion of a geodesic on a surface
in R

3. We show that locally they are the shortest paths between two
given points. Geodesics generalize the straight lines in Euclidean plane.

Let M be a regular surface in R
3 and γ : I → M be a curve on M

such that γ(0) = p. As we have seen earlier the second derivative γ̈(0)
at p has a natural decomposition

γ̈(0) = γ̈(0)tan + γ̈(0)norm

into its tangential part, contained in TpM , and its normal part in the
orthogonal complement TpM

⊥.

Definition 9.1. Let M be an oriented regular surface in R
3. A

curve γ : I → M on M is said to be a geodesic if the tangential part
of the second derivative γ̈(t) satisfies

γ̈(t)tan = 0

for all t ∈ I.

Example 9.2. Let p ∈ S2 be a point on the unit sphere and
Z ∈ TpS

2 be a unit tangent vector at p. Then 〈p, Z〉 = 0 so {p, Z}
an orthonormal basis for a plane in R

3 (through the origin) which in-
tersects the sphere in a great circle. This circle is parametrized by the
curve γ : R → S2

γ(s) = cos s · p + sin s · Z.

Then the second derivative γ̈(s) satisfies γ̈(s) = −γ(s) for all s ∈ I.
This means that the tangential part γ̈tan(s) vanishes so the curve is a
geodesic on S2.

Proposition 9.3. Let M be a regular surface in R
3 and γ : I → M

be a geodesic on M . Then the norm |γ̇| : I → R is constant i.e. the

curve is parametrized proportional to arclength.

51
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Proof. The statement is an immediate consequence of the follow-
ing calculation

d

dt
|γ̇(t)|2 =

d

dt
〈γ̇(t), γ̇(t)〉

= 2 〈γ̈(t), γ̇(t)〉
= 2 〈γ̈(t)tan, γ̇(t)〉
= 0.

¤

Definition 9.4. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and γ : I → M be a curve on M parametrized
by arclength. Then we define the geodesic curvature kg : I → R of
γ on M by

kg(t) = 〈N(γ(t)) × γ̇(t), γ̈(t)〉.

It should be noted that {γ̇(t), N(γ(t)) × γ̇(t)} is an orthonormal
basis for the tangent plane Tγ(t)M of M and γ(t). The curve γ : I → M
is parametrized by arclength so the second derivative is perpendicular
to γ̇. This means that the

kg(t)
2 = |γ̈(t)tan|2

The geodesic curvature is therefore a measure of how far the curve is
from being a geodesic.

Corollary 9.5. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2 and γ : I → M be a curve on M parametrized

by arclength. Let k : I → R be the curvature of γ as a curve in R
3

and kn, kg : I → R be the normal and geodesic curvatures, respectively.

Then

k(t)2 = kg(t)
2 + kn(t)2.

Proof. This is a direct consequence of the orthogonal decomposi-
tion

γ̈(0) = γ̈(0)tan + γ̈(0)norm.

¤

Example 9.6. Let γ = (r, 0, z) : I → R
3 be a differentiable curve

in the (x, z)-plane such that r(s) > 0 and ṙ(s)2+ ż(s)2 = 1 for all s ∈ I.
Then X : I × R

2 → R
3 with

X(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









r(u)
0

z(u)



 =





r(u) cos v
r(u) sin v

z(u)
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parametrizes a surface of revolution M . The tangent space is generated
by the vectors

Xu =





ṙ(u) cos v
ṙ(u) sin v

ż(u)



 , Xv =





−r(u) sin v
r(u) cos v

0



 .

For a fixed u ∈ R the curve γ1 : I → M with

γ1(v) =





r(u) cos v
r(u) sin v

z(u)





parametrizes a meridian on M by arclength. It is easily seen that

〈γ̈1, Xu〉 = 〈γ̈1, Xv〉 = 0

so γ1 is a geodesic.
For a fixed v ∈ R the curve γ2 : I → M with

γ2(u) =





r(u) cos v
r(u) sin v

z(u)





parametrizes a parallel on M A simple calculation yields

〈γ̈2, Xu〉 = −ṙ(u)r(u) and 〈γ̈2, Xv〉 = 0.

This means that γ2 is a geodesic if and only if ṙ(u) = 0.

Theorem 9.7. Let M be a regular surface in R
3 and X : U → M

be a local parametrization of M with
(

E F
F G

)

= [dX] · [dX]t.

If (u, v) : I → U is a C2-curve in U then the composition

γ = X ◦ (u, v) : I → X(U)

is a geodesic on M if and only if

d

dt
(Eu̇ + F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ + Guv̇
2)

d

dt
(Fu̇ + Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ + Gvv̇
2).

Proof. The tangent vector of the curve (u, v) : I → U is given by
(u̇, v̇) = u̇e1 + v̇e2 so for the tangent γ̇ of γ we have

γ̇ = dX · (u̇e1 + v̇e2)

= u̇dX · e1 + v̇dX · e2

= u̇Xu + v̇Xv.
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Following the definition we see that γ : I → X(U) is a geodesic if and
only if

〈γ̈, Xu〉 = 0 and 〈γ̈, Xv〉 = 0

The first equation gives

0 = 〈 d

dt
(u̇Xu + v̇Xv), Xu〉

=
d

dt
〈u̇Xu + v̇Xv, Xu〉 − 〈u̇Xu + v̇Xv,

d

dt
Xu〉

which is equivalent to

d

dt
(Eu̇ + F v̇)

= 〈u̇Xu + v̇Xv, u̇Xuu + v̇Xu,v〉
= u̇2〈Xu, Xuu〉 + u̇v̇(〈Xu, Xuv〉 + 〈Xv, Xuu〉) + v̇2〈Xv, Xuv〉

=
1

2
Euu̇

2 + Fuu̇v̇ +
1

2
Guv̇

2.

This gives us the first geodesic equation. The second one is obtained
in the same way. ¤

Theorem 9.7 characterizes geodesics as solutions to a second order
non-linear system of ordinary differential equations. For this we have
the following existence result.

Theorem 9.8. Let M be a regular surface in R
3, p ∈ M and

Z ∈ TpM then there exists a unique, locally defined, geodesic

γ : (−ǫ, ǫ) → M

satisfying the initial conditions γ(0) = p and γ̇(0) = Z.

Proof. The proof is based on a second order consequence of the
well-known theorem of Picard-Lindelöf formulated here as Fact 9.9. ¤

Fact 9.9. Let f : U → R
n be a continuous map defined on an open

subset U of R × R
n and L ∈ R

+ such that

|f(t, x) − f(t, y)| ≤ L · |x − y|
for all (t, x), (t, y) ∈ U . If (t0, x0) ∈ U and x1 ∈ R

n then there exists a

unique local solution x : I → R
n to the following initial value problem

x′′(t) = f(t, x(t)), x(t0) = x0, x′(t0) = x1.

Proposition 9.10. Let M1 and M2 be two regular surfaces in R
3

and φ : M1 → M2 be an isometric differentiable map. Then γ1 : I →
M1 is a geodesic on M1 if and only if the composition γ2 = φ◦γ1 : I →
M2 is a geodesic on M2
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Proof. See Exercise 9.6 ¤

Theorem 9.11 (Clairaut). Let M be a regular surface of revolution

and γ : I → M be a geodesic on M parametrized by arclength. Let

r : I → R
+ be the function describing the distance between a point γ(s)

and the axes of rotation and θ : I → R be the angle between γ̇(s) and

the meridian throught γ(s). Then the product r(s) sin θ(s) is constant

along the geodesic.

Proof. Let the surface M be parametrized by X : I × R
2 → R

3

with

X(u, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









r(u)
0

z(u)



 =





r(u) cos v
r(u) sin v

z(u)



 ,

where (r, 0, z) : I → R
3 is a differentiable curve in the (x, z)-plane such

that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I. Then

Xu =





ṙ(u) cos v
ṙ(u) sin v

ż(u)



 , Xv =





−r(u) sin v
r(u) cos v

0





give
(

E F
F G

)

= [dX] · [dX]t =

(

1 0
0 r(u)2

)

so the set

{Xu,
1

r(u)
Xv}

is an orthonormal basis for the tangent space of M at X(u, v). This
means that the tangent γ̇(s) of the geodesic γ : I → M can be written
as

γ̇(s) = cos θ(s)Xu(s) + sin θ(s)
1

r(s)
Xv(s),

where r(s) is the distance to the axes of revolution and θ(s) the angle
between γ̇(s) and the tangent Xu(s) to the meridian. It follows that

Xu × γ̇ = Xu × (cos θXu +
sin θ

r
Xv)

=
sin θ

r
(Xu × Xv)

but also

Xu × γ̇ = Xu × (u̇Xu + v̇Xv)

= v̇(Xu × Xv).
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Hence
r(s)2v̇(s) = r(s) sin θ(s).

It now follows from the second geodesic equation that

d

ds
(r(s) sin θ(s)) =

d

ds
(r(s)2v̇(s)) = 0.

¤

Definition 9.12. Let M be a regular surface in R
3 and γ : I → M

be a C2-curve on M . A variation of γ is a C2-map

Φ : (−ǫ, ǫ) × I → M

such that for all s ∈ I, Φ0(s) = Φ(0, s) = γ(s). If the interval is
compact i.e. of the form I = [a, b], then the variation Φ is said to be
proper if for all t ∈ (−ǫ, ǫ), Φt(a) = γ(a) and Φt(b) = γ(b).

Definition 9.13. Let M be a regular surface in R
3 and γ : I → M

be a C2-curve on M . For every compact subinterval [a, b] of I we define
the length functional L[a,b] by

L[a,b](γ) =

∫ b

a

|γ̇(t)|dt.

A C2-curve γ : I → M is said to be a critical point for the length
functional if every proper variation Φ of γ|[a,b] satisfies

d

dt
(L[a,b](Φt))|t=0 = 0.

We shall now prove that geodesics can be characterized as the crit-
ical points of the length functional.

Theorem 9.14. Let γ : I = [a, b] → M be a C2-curve parametrized

by arclength. Then γ is a critical point for the length functional if and

only if it is a geodesic.

Proof. Let Φ : (−ǫ, ǫ) × I → M with Φ : (t, s) 7→ Φ(t, s) be a
proper variation of γ : I → M . Then

d

dt
(L[a,b](Φt))|t=0

=
d

dt

(

∫ b

a

|γ̇t(s)|ds
)

|t=0

=

∫ b

a

d

dt

√

〈∂Φ

∂s
,
∂Φ

∂s
〉ds|t=0

=

∫ b

a

(

〈 ∂2Φ

∂t∂s
,
∂Φ

∂s
〉/

√

〈∂Φ

∂s
,
∂Φ

∂s
〉
)

ds|t=0
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=

∫ b

a

〈 ∂2Φ

∂s∂t
,
∂Φ

∂s
〉ds|t=0

=

∫ b

a

(
d

ds
(〈∂Φ

∂t
,
∂Φ

∂s
〉) − 〈∂Φ

∂t
,
∂2Φ

∂s2
〉)ds|t=0

= [〈∂Φ

∂t
(0, s),

∂Φ

∂s
(0, s)〉]ba −

∫ b

a

〈∂Φ

∂t
(0, s),

∂2Φ

∂s2
(0, s)〉ds.

The variation is proper, so

∂Φ

∂t
(0, a) =

∂Φ

∂t
(0, b) = 0.

Furthermore
∂2Φ

∂s2
(0, s) = γ̈(s),

so
d

dt
(L[a,b](Φt))|t=0 = −

∫ b

a

〈∂Φ

∂t
(0, s), γ̈(s)tan〉)ds.

The last integral vanishes for every proper variation Φ of γ if and only
if γ is a geodesic. ¤

Let M be a regular surface in R
3, p ∈ M and

T 1
p M = {e ∈ TpM | |e| = 1}

be the unit circle in the tangent plane TpM . Then every non-zero
tangent vector Z ∈ TpM can be written as

Z = rZ · eZ ,

where rZ = |Z| and eZ = Z/|Z| ∈ T 1
p M . For e ∈ T 1

p M let

γe : (−ae, be) → M

be the maximal geodesic such that ae, be ∈ R
+ ∪ {∞}, γe(0) = p and

γ̇e(0) = e. It can be shown that the real number

ǫp = inf{−ae, be| e ∈ T 1
p M}.

is positive so the open ball

B2
ǫp

(0) = {Z ∈ TpM | |Z| < ǫp}
is non-empty. The exponential map expp : B2

ǫp
(0) → M at p is

defined by

expp : Z 7→
{

p if Z = 0
γeZ

(rZ) if Z 6= 0.

Note that for e ∈ T 1
p M the line segment λe : (−ǫp, ǫp) → TpM

with λe : t 7→ t · e is mapped onto the geodesic γe i.e. locally we have



58 9. GEODESICS

γe = expp ◦λe. One can prove that the map expp is smooth and it
follows from its definition that the differential

d(expp)0 : TpM → TpM

is the identity map for the tangent space TpM . Then the inverse
mapping theorem tells us that there exists an rp ∈ R

+ such that if
Up = B2

rp
(0) and Vp = expp(Up) then

expp |Up
: Up → Vp

is a diffeomorphism parametrizing the open subset Vp of M .

Example 9.15. Let S2 be the unit sphere in R
3 and p = (1, 0, 0)

be the north pole. Then the unit circle in the tangent plane TpS
2 is

given by
T 1

p S2 = {(0, cos θ, cos θ)| θ ∈ R}.
The exponential map expp : TpS

2 → S2 of S2 at p is defined by

expp : s(0, cos θ, cos θ) 7→ cos s(1, 0, 0) + sin s(0, cos θ, cos θ).

This is clearly injective on the open ball

Bπ(0) = {Z ∈ TpS
2| |Z| < π}

and the geodesic

γ : s 7→ expp(s(0, cos θ, cos θ))

is the shortest path between p and γ(r) as long as r < π.

Theorem 9.16. Let M be a regular surface in R
3. Then the

geodesics are locally the shortest between their end points.

Proof. Let p ∈ M , U = B2
r (0) in TpM and V = expp(U) be such

that the restriction
φ = expp |U : U → V

of the exponential map at p is a diffeomorphism. We define a metric
ds2 on U such that for vector fields Z,W on U we have

ds2(X,Y ) = 〈dφ(X), dφ(Y )〉.
This turns φ : U → V into an isometry. It then follows from the
construction of the exponential map, that the geodesics in U through
the point 0 = φ−1(p) are exactly the lines

λZ : t 7→ t · Z
where Z ∈ TpM .

Now let q ∈ B2
r (0) \ {0} and λq : [0, 1] → B2

r (0) be the curve
λq : t 7→ t · q. Further let σ : [0, 1] → U be any curve in U such that
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σ(0) = 0 and σ(1) = q. Along σ we define two vector fields σ̂ and σ̇rad

by σ̂ : t 7→ σ(t) and

σ̇rad : t 7→ ds2(σ̇(t), σ̂(t))

ds2(σ̂(t), σ̂(t))
· σ(t)).

Then it is easily checked that

|σ̇rad(t)| =
|ds2(σ̇(t), σ̂(t))|

|σ̂(t)|
and

d

dt
|σ̂(t)| =

d

dt

√

ds2(σ̂(t), σ̂(t)) =
ds2(σ̇(t), σ̂(t))

|σ̂(t)| .

Combining these two relations we yield

|σ̇rad(t)| ≥
d

dt
|σ̂(t)|.

This means that

L(σ) =

∫ 1

0

|σ̇(t)|dt

≥
∫ 1

0

|σ̇rad(t)|dt

≥
∫ 1

0

d

dt
|σ̂(t)|dt

= |σ̂(1)| − |σ̂(0)|
= |q|
= L(λq).

This proves that in fact γ is the shortest path connecting p and q. ¤

Example 9.17. Let M be a surface of revolution parametrized by
X̃ : I × R → M ,

X̃(s, v) =





cos v − sin v 0
sin v cos v 0

0 0 1









r(s)
0

z(s)



 =





r(s) cos v
r(s) sin v

z(s)



 ,

where (r, 0, z) : I → R
3 is a differentiable curve in the (x, z)-plane such

that r(s) > 0 and ṙ(s)2 + ż(s)2 = 1 for all s ∈ I. In chapter 7 we have
seen that the Gaussian curvature K of M satisfies the equation

r̈(s) + K(s)r(s) = 0.

If we put K = −1 and solve this linear ordinary differential equation
for r we get the general solution r(s) = aes +be−s. By a suitable choice
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of a and b we yield a surface of revolution with constant curvature
K = −1.

If we pick r, z : R
+ → R with

r(s) = e−s and z(s) =

∫ s

0

√
1 − e−2tdt

we get a parametrization X̃ : R
− × R → M of the famous pseudo-

sphere. The corresponding first fundamental form is
(

Ẽ F̃

F̃ G̃

)

= [dX̃] · [dX̃]t =

(

1 0
0 e−2s

)

.

For convenience we introduce a new variable u satisfying

s(u) = − log u.

This gives us a new parametrization X : I × R → M of the pseudo-
sphere, where I = {u ∈ R| u > 1} and X(u, v) = X̃(s(u), v). Then the
chain rule gives

Xu = suXs = −1

s
Xs

and we yield the following first fundamental form for X
(

E F
F G

)

= [dX̃] · [dX̃]t =
1

u2

(

1 0
0 1

)

.

It is clear that this first fundamental form actually gives us a metric

ds2 =
1

u2
(dv2 + du2)

in the upper half plane

H2 = {(v, u) ∈ R
2| u > 0}.

This is called the hyperbolic metric. The hyperbolic space (H2, ds2)
is very interesting both for its rich geometry but also for its historic
importance. It is a model for the non-Euclidean geometry.

We shall now determine the geodesics in the hyperbolic plane. Let
γ = (v, u) : I → H2 be a geodesic parametrized by arclength. Then
γ̇ = (v̇, u̇) and

ds2(γ̇, γ̇) =
1

u2
(v̇2 + u̇2) = 1

or equivalently v̇2 + u̇2 = u2. Following the proof of Clairaut’s theorem
we know that

r(s) sin θ(s) =
1

u2
v̇ = R

is a real constant along the geodesic. This implies that v̇ = u2R.
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If R = 0 we see that v̇ = 0 so the function v is constant. This
means that the geodesic is a vertical line in the upper half plane H2.

If R 6= 0 then we have

u4R2 + u̇2 = u2

or equivalently
u̇ = ±

√
1 − R2u2

This gives us the equation

dv = ± Ru√
1 − R2u2

du

which can be integrated to

R(v − v0) = ±
√

1 − R2u2

which implies

(v − v0)
2 + u2 =

1

R2
.

This means that the geodesic is a half circle in H2 with centre at (v0, 0)
and radius 1/R.
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Exercises

Exercise 9.1. Describe the geodesics on the circular cylinder

M = {(x, y, z) ∈ R
3| x2 + y2 = 1}.

Exercise 9.2. Find four different geodesics passing through the
point p = (1, 0, 0) on the one-sheeted hyperboloid

M = {(x, y, z) ∈ R
3| x2 + y2 − z2 = 1}.

Exercise 9.3. Find four different geodesics passing through the
point p = (0, 0, 0) on the surface

M = {(x, y, z) ∈ R
3| xy(x2 − y2) = z}.

Exercise 9.4. Let X : R
2 → R

3 be the parametrized surface in R
3

given by

X(u, v) = (u cos v, u sin v, v).

Determine for which values of α ∈ R the curve γα : R → M with

γα(t) = X(t, αt) = (t cos(αt), t sin(αt), αt)

is a geodesic on M

Exercise 9.5. Let γ : R → R
3 be a regular curve, parametrized by

arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of γ, repectively. Let r ∈ R

+ such that the
r-tube M around γ given by X : R

2 → R
3 with

X(s, θ) 7→ γ(s) + r(cos θ · n(s) + sin θ · b(s))
is a regular surface. Show that the circles γs(θ) : R → R

3 are geodesics
on the surface.

Exercise 9.6. Find a proof of Proposition 9.10.

Exercise 9.7. Let M be the regular surface in R
3 parametrized by

X : R × (−1, 1) → R
3 with

X(u, v) = 2(cos u, sin u, 0)

+v sin(u/2)(0, 0, 1) + v cos(u/2)(cos u, sin u, 0).

Determine whether the curve γ : R → M defined by

γ : t 7→ X(t, 0)

is a geodesic or not. Is the surface M orientable ?
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Exercise 9.8. Let M be the regular surface in R
3 given by

M = {(x, y, z) ∈ R
3| x2 + y2 − z2 = 1}.

Show that v = (−1, 3,−
√

2) is a tangent vector to M at p = (
√

2, 0, 1).
Let γ = (γ1, γ2, γ3) : R → M be the geodesic which is uniquely deter-
mined by γ(0) = p and γ̇(0) = v. Determine the value

inf
s∈R

γ3(s).

Exercise 9.9. Let M be a regular surface in R
3 such that every

geodesic γ : I → M is contained in a plane. Show that M is either
contained in a plane or in a sphere.

Exercise 9.10. The regular surface Σ in R
3 is parametrized by

X : R
2 → R

3 with

X : (u, v) = (cos v(2 + cos u), sin v(2 + cos u), sin u).

Let γ = (x, y, z) : R → Σ be the geodesic on Σ satisfying

γ(0) = (3, 0, 0) and γ′(0) = (0,
1√
2
,

1√
2
).

Determine the value
inf
s∈R

(x2(s) + y2(s)).





CHAPTER 10

The Gauss-Bonnet Theorem

In this chapter we prove three versions of the Gauss-Bonnet theo-
rem.

Theorem 10.1. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2. Let X : U → M be a local parametrization of

M such that X(U) is simply connected. Let γ : R → M parametrize a

regular, simple, closed and positively oriented curve on M by arclength.

Let Int(γ) be the interior of γ and kg : R → R be its geodesic curvature.

If L ∈ R
+ is the period of γ then

∫ L

0

kg(s)ds = 2π −
∫

Int(γ)

KdA,

where K is the Gaussian curvature of M

Proof. Let {Z,W} be the orthonormal basis which we obtain by
applying the Gram-Schmidt process on the basis {Xu, Xv}. Along the
curve γ : R → X(U) we define an angle θ : R → R such that the unit
tangent vector γ̇ satisfies

γ̇(s) = cos θ(s)Z(s) + sin θ(s)W (s).

Then

N × γ̇ = N × (cos θZ + sin θW )

= − sin θZ + cos θW.

and for the second derivative γ̈ we have

γ̈ = θ̇(− sin θZ + cos θZ) + cos θŻ + sin θẆ

so the geodesic curvature satisfies

kg = 〈N × γ̇, γ̈〉
= θ̇〈− sin θZ + cos θZ,− sin θŻ + cos θẆ 〉

+〈− sin θZ + cos θZ, cos θŻ + sin θẆ 〉
= θ̇ − 〈Z, Ẇ 〉.

65
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If we integrate the geodesic curvature kg : R → R over one period
we get

∫ L

0

kg(s)ds =

∫ L

0

θ̇(s)ds −
∫ L

0

〈Z(s), Ẇ (s)〉ds

= θ(L) − θ(0) −
∫ L

0

〈Z(s), Ẇ (s)〉ds

= 2π −
∫ L

0

〈Z(s), Ẇ (s)〉ds.

Let α = X−1 ◦γ : R → U be the inverse image of the curve γ in the
simply connected parameter region U . The curve α is simple, closed
and positively oriented. Utilizing Lemma 8.3 and Green’s theorem we
now yield

∫ L

0

〈Z(s), Ẇ (s)〉ds =

∫ L

0

〈Z, u̇Wu + v̇Wv〉ds

=

∫

α

〈Z,Wu〉du + 〈Z,Wv〉dv

=

∫

Int(π)

(

〈Z,Wv〉u − 〈Z,Wu〉v
)

dudv

=

∫

Int(π)

(

〈Zu,Wv〉 + 〈Z,Wuv〉

−〈Zv,Wu〉 − 〈Z,Wvu〉
)

dudv

=

∫

Int(π)

(

〈Zu,Wv〉 − 〈Zv,Wu〉
)

dudv

=

∫

Int(π)

K
√

EG − F 2dudv

=

∫

Int(γ)

KdA.

This proves the statement. ¤

Corollary 10.2. Let γ : R → R
2 parametrize a regular, simple,

closed and positively oriented curve by arclength. If L ∈ R
+ is the

period of γ then
∫ L

0

kg(s)ds = 2π,

where kg : R → R is the geodesic curvature of γ.

The next result generalizes Theorem 10.1
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Theorem 10.3. Let M be an oriented regular surface in R
3 with

Gauss map N : M → S2. Let X : U → M be a local parametrization

of M such that X(U) is simply connected. Let γ : R → M parametrize

a piecewise regular simple, closed, positively oriented curve on M by

arclength. Let Int(γ) be the interior of γ and kg : R → R be its geodesic

curvature on each regular piece. If L ∈ R
+ is the period of γ then

∫ L

0

kg(s)ds =
n

∑

i=1

αi − (n − 2)π −
∫

Int(γ)

KdA,

where K is the Gaussian curvature of M and {α1, . . . , αn} the inner

angles at the corner points.

Proof. Let {Z,W} the orthonormal basis which we obtain by ap-
plying the Gram-Schmidt process on the basis {Xu, Xv}. Let D be the
discrete subset of R corresponding to the corner points of γ(R). Along
the the regular arcs of γ : R → X(U) we define an angle θ : R \D → R

such that the unit tangent vector γ̇ satisfies

γ̇(s) = cos θ(s)Z(s) + sin θ(s)W (s).

We have seen earlier that in this case the geodesic curvature is given
by kg = θ̇ − 〈Z, Ẇ 〉 and integration over one period gives

∫ L

0

kg(s)ds =

∫ L

0

θ̇(s)ds −
∫ L

0

〈Z(s), Ẇ (s)〉ds.

As a consequence of Green’s theorem we have
∫ L

0

〈Z(s), Ẇ (s)〉ds =

∫

Int(γ)

KdA.

The integral over the derivative θ̇ splits up into integrals over each
regular arc

∫ L

0

θ̇(s)ds =
n

∑

i=1

∫ si

si−1

θ̇(s)ds

which measures the change of angle with respect to the orthonormal
basis {Z,W} along each arc. At each corner point the tangent jumps
by the angle (π−αi) where αi is the corresponding inner angle. When
moving around the curve once the changes along the arcs and the jumps
at the corner points add up to 2π. Hence

2π =

∫ L

0

θ̇(s)ds +
n

∑

i=1

(π − αi).

This proves the statement ¤
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Theorem 10.4. Let M be an orientable and compact regular sur-

face in R
3. If K is the Gaussian curvature of M then

∫

M

KdA = 2πχ(M),

where χ(M) is the Euler characteristic of the surface.

Proof. Let T = {T1, . . . , Tm} be a triangulation of the surface
M such that each triangle Tk is geodesic and contained in the image
Xk(Uk) of a local parametrization Xi : Ui → M . Then the integral of
the Gaussian curvature K over M splits

∫

M

KdA =
m

∑

k=1

∫

Tk

KdA

into the sum of integrals over each triangle Tk ∈ T . Following Theorem
10.3 we now have

∫

Tk

KdA =
n

∑

i=1

αi + (2 − nk)π

for each triangle Tk. By adding these relations we obtain
∫

M

KdA =
m

∑

k=1

n
∑

i=1

(αki + (2 − n)π)

=
m

∑

k=1

n
∑

i=1

αki − 2πE + 2πF

= 2π(V − E + F ).

This proves the statement. ¤
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Exercises

Exercise 10.1. Let M be a regular surfaces in R
3 homeomorphic

to the torus. Show that there exists a point p ∈ M where the Gaussian
curvature vanishes i.e. K(p) = 0.

Exercise 10.2. The regular surface M in R
3 is given by

M = {(x, y, z) ∈ R
3| x2 + y2 − z2 = 1 and − 1 < z < 1}.

Determine the value of the integral
∫

M

KdA,

where K is the Gaussian curvature of M .

Exercise 10.3. For r ∈ R
+ let the surface Σr be given by

Σr = {(x, y, z) ∈ R
3| z = cos

√

x2 + y2, x2 + y2 < r2, x, y > 0}.
Determine the value of the integral

∫

Σr

KdA,

where K is the Gausssian curvature of Σr.

Exercise 10.4. Let M be a regular surface in R
3 of negative Gauss-

ian curvature K and p, q ∈ M be two distinct point in M . Further let
γ1, γ2 be two distinct geodesics from p to q. Show that M is not simply
connected.

Exercise 10.5. For n ≥ 1 let Mn be the regular surface in R
3 given

by
Mn = {(x, y, z) ∈ R

3| x2 + y2 = (1 + z2n)2, 0 < z < 1}.
Determine the value of the integral

∫

Mn

KdA,

where K is the Gaussian curvature of Mn.


