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Preface

These lecture notes grew out of a course on elementary differential
geometry which I have given at Lund University for a number of years.
Their main purpose is to introduce the beautiful theory of Gaussian
geometry i.e. the theory of curves and surfaces in three dimensional
Euclidean space.

This is a subject with no lack of interesting examples. They are
indeed the key to a good understanding of it and will therefore play a
major role throughout this work.

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some basic topology.

Norra Nobbelov, 25 December 2008

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

Around 300 BC Euclid wrote ”"The Thirteen Books of the Ele-
ments”. It was used as the basic text on geometry throughout the
Western world for about 2000 years. Euclidean geometry is the theory
one yields when assuming Euclid’s five axioms, including the parallel
postulate.

Gaussian geometry is the study of curves and surfaces in three di-
mensional Euclidean space. This theory was initiated by the ingenious
Carl Friedrich Gauss (1777-1855). The work of Gauss, Janos Bolyai
(1802-1860) and Nikolai Ivanovich Lobachevsky (1792-1856) lead to
their independent discovery of non-FEuclidean geometry. This solved
the best known mathematical problem ever and proved that the par-
allel postulate was indeed independent of the other four axioms that
Euclid used for his theory.






CHAPTER 2

Curves in the Euclidean plane R?

In this chapter we study regular curves in the two dimensional Eu-
clidean plane. We define their curvature and show that this determines
the curves up to Euclidean motions. We then prove the isoperimetric
inequality for plane curves.

Let the n-dimensional real vector space R™ be equipped with its
standard Euclidean scalar product (-,-) : R” x R” — R. This is
given by

<$,y> =T1Y1+ -+ Tpln

and induces the norm | - | : R™ — R on R" with

o] = a3 4o a2

Definition 2.1. A parametrized curve in R" is a differentiable
map 7 : [ — R” from an open interval I on the real line R. The image
v(I) in R™ is the corresponding geometric curve. We say that the
map v : I — R"™ parametrizes vy(I). The derivative +/(t) is called the
tangent of v at the point v(¢) and

Lm:ﬁwwwSW

is the arclength of 7. The curve 7 is said to be regular if 7/(¢) # 0
forall t € I.

Example 2.2. If p and ¢ are two distinct points in R™ then v :
R — R™ with

yit—(1—t)-p+t-q
parametrizes the straight line through p = v(0) and ¢ = ~(1).
Example 2.3. If r € RT and p € R? then v : R — R? with

v:t—p+4r-(cost,sint)

7
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parametrizes a circle with center p and radius r. The arclength of the
curve 7| (o,2x) is

2
L(7]0,2m) = / |7/ (¢)|dt = 27
0

Definition 2.4. A differentiable curve v : I — R" is said to pa-
rametrize y(I) by arclength if |{(s)| = 1 for all s € [ ie. the
tangents (s) are elements of the unit sphere S™! in R".

Theorem 2.5. Let v : (a,b) — R" be a regular curve in R™. Then
the image (1) of v can be parametrized by arclength.

PROOF. Define the arclength function o : (a,b) — R* by

t
o) = [ W wlde
Then o'(t) = |7/(t)| > 0 so o is strictly increasing and

o((a,b)) = (0, L(7)).
Let 7 : (0, L(7y)) — (a,b) be the inverse of o such that o(7(s)) = s for
all s € (0, L()). By differentiating we get

d , .
25 (0(7(s)) = o'(7(s))7(s) = 1.

If we define the curve a : (0, L(7y)) — R™ by o = 7 o 7 then the chain
rule gives &(s) = v/(7(s)) - 7(s). Hence
a(s)| = [ (7(s))] - 7(s)
= o(r()) - +(9)
= 1.
The function 7 is bijective so « parametrizes (I) by arclength. 0

For a regular curve v : I — R2? parametrized by arclength, we
define the tangent T : I — S? along v by

T(s) =(s)
and the normal N : I — S? with
N(s) = RoT(s).
Here R : R* — R? is the linear rotation of the angle 7/2 given by
w(0)= () 6)
It follows that for each s € I the set {T'(s), N(s)} is an orthonormal
basis for R?. It is called the Frenet frame along the curve.
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Definition 2.6. Let v : I — R? be a regular curve parametrized
by arclength. Then we define its curvature « : I — R by

k(s) = (T(s), N(s)).

Note that the curvature is a measure of how fast the unit tangent
T(s) = 4(s) is bending in the direction of the normal N(s), or equiva-
lently, out of the line generated by T'(s).

Theorem 2.7. Lety : I — R? be a curve parametrized by arclength.
Then the Frenet frame satisfies the following system of ordinary differ-

ential equations.
)= Lot O[]

PROOF. The curve v : I — R? is parametrized by arclength so

(T (s),T(s) = 0

2T(5), T(s)) =

and

2N (s), N(s)) = (N (s), N(3))) = 0

As a direct consequence we have

T(s) = (T'(s), N(s))N(s) = K(s)N(s)

because

(P(s), N () + (T(s), N () = (T (s), N(s))) = 0.

U

Theorem 2.8. Lety : I — R? be a curve parametrized by arclength.
Then its curvature k : I — R wvanishes identically if and only if the
geometric curve ¥(I) is contained in a line.

PrOOF. If follows from Theorem 2.7 that the curvature k(s) van-
ishes identically if and only if the tangent is constant i.e. there exist a
unit vector Z € S! and a point p € R? such that

v(s)=p+s-Z
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Theorem 2.9. Let k : I — R be a differentiable functions. Then
there exists a curve vy : I — R3 parametrized by arclength with curvature
k. If 7 : I — R3 is another such curve, then there exists an orthogonal
matriz A € SO(2) and an element p € R? such that

v(s) = A-3(s) +p.
PROOF. See the proof of Theorem 3.10. O

In differential geometry we are interested in properties of geometric
object which are independent of how these objects are parametrized.
The curvature of a geometric curve should therefore not depend on its
parametrization.

Definition 2.10. Let v : I — R? be a regular curve in R? not
necessarily parametrized by arclength. Let t : J — I be a C*-function
such that the composition & = yot: J — R? is a curve parametrized
by arclength. Then we define the curvature s : I — R of 7 : I — R?
by

K(t(s)) = R(s),

where 5 : J — R is the curvature of «.

Proposition 2.11. Let v : I — R? be a reqular curve in R%. Then
its curvature Kk satisfies

_det[y/(2),7"(1)]
N NOE

PROOF. See Exercise 2.5. O

Corollary 2.12. Let v : I — R? be a reqular curve in R%. Then
the geometric curve (1) is contained in a line if and only if v'(t) and
v'(t) are linearly dependent for allt € I.

PrRoOF. The statement is a direct consequence of Theorem 2.8 and
Proposition 2.11. [

We complete this chapter by proving the isoperimetric inequality.
But let us first remind us of the following topological facts.

Definition 2.13. A continuous map v : R — R? is said to param-
etrize a simple closed curve if it is periodic with period L € R* and
the restriction

Yo,py : [0, L) = R
is injective.

The following result is called the Jordan curve theorem.
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Fact 2.14. Let the continuous map v : R — R? parametrize a
simple closed curve. Then the subset R*\ v(R) of the plane has exactly
two connected components. The interior Int(vy) of v is bounded and the
exterior Ext(vy) is unbounded.

Definition 2.15. A regular map v : R — R?, parametrizing a
simple closed curve, is said to be positively oriented if its normal

N(t) = Ro~/(t)

is an inner normal to the interior Int(y) for all ¢ € R. Tt is said to be
negatively oriented otherwise.

We are now ready for the isoperimetric inequality.

Theorem 2.16. Let C' be a reqular simple closed curve in the plane
with arclength L and let A be the area of the region enclosed by C'. Then

dr- A< L?
with equality if and only if C' is a circle.

PROOF. Let [; and [ be two parallel lines touching the curve C' such
that C' is contained in the strip between them. Introduce a coordinate
system in the plane such that [; and [, are orthogonal to the z-axis
and given by

L={(z,y) €eR*|z=—r} and I, = {(z,y) ER?*| z =r}.

Let v = (z,y) : R — R? be a positively oriented curve parameterizing
C' by arclength, such that x(0) = r and z(s;) = —r for some s; € (0, L).
Define the curve o : R — R? by a(s) = (x(s), 7(s)) where

) ittelo,s),
?/(3)—{_ r2 —a22(s) ift € sy, L).

Then this new curve parameterizes the circle given by 22 4 y? = r2.
As an immediate consequence of Lemma 2.17 we now get

L L
A:/ x-y'ds and 7T-T2:—/ g - x'ds.
0 0

Employing the Cauchy-Schwartz inequality we then yield

L
A+7-r? = /x~y’—g7-x'ds

0
L
< Ve -y —§-a')2ds
0
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L
< [ VR @R s
0
= L-r.
From the inequality
0< (VA—ryr)?=A—2rVAYT + 112
we see that
VAT < A+mr? < Lr
SO
AATr? < L?r?
or equivalently
At A < L2
It follows from our construction above that the positive real number
r depends on the direction of the two parallel lines [; and [y chosen. In
the case of equality 47A = L we get A = 7r?. Since A is independent

of the direction of the two lines, we see that so is . This implies that
in that case the curve C' must be a circle. U

Lemma 2.17. Let the reqular, positively oriented map v : R — R?
parametrize a simple closed curve in the plane. If A is the area of the
interior Int(~y) of v then

1
A= —/ (xy — ya')dt = / xy'dt = —/ x'ydt.
2 Jym) +(B) +(R)
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Exercises

Exercise 2.1. A cycloid is a curve in the plane parametrized by a
map 7 : R — R? of the form

v(t) = r(t, 1) + r(sin(—t), cos(—t)),

where r € RT. Describe the curve geometrically and calculate the
arclength

t
o) = [ 1 wldu
0
Is the curve regular ?

Exercise 2.2. An astroid is a curve in the plane parametrized by
amap 7 : R — R? of the form

y(t) = (4r cos t,4rsin®t) = 3r(cost,sint) + r(cos(—3t), sin(—3t)),

where r € RT. Describe the curve geometrically and calculate the
arclength

t
o) = [ 1 (wlde
Is the curve regular ? ’
Exercise 2.3. Let the curves v;,7, : R — R? be given by
7 (t) = r(cos(at),sin(at)), ~o(t) = r(cos(—at),sin(—at)).
Calculate their curvatures k1, Ko.

Exercise 2.4. Let v : I — R? be a regular curve, parametrized by
arclength, with Frenet frame {T'(s), N(s)}. For A € R we define the
parallel curve vy : I — R? by

() = 7(t) + AN(1).
Calculate the curvature k) of those curves 7, which are regular.
Exercise 2.5. Prove the curvature formula in Proposition 2.11.

Exercise 2.6. Let v : R — R? be the parametrized curve in R?
given by v(t) = (sint,sin 2t). Is v regular, closed and simple ?

Exercise 2.7. Let the positively oriented v : R — R? parametrize
a simple closed curve by arclength. Show that if the period of v is
L € R* then the total curvature satisfies

/OL k(s)ds = 2.






CHAPTER 3

Curves in the Euclidean space R?

In this chapter we study regular curves in the three dimensional
Euclidean space. We define their curvature and torsion and show that
these determine the curves up to Euclidean motions.

We equip the three dimensional real vector space R3 with the stan-
dard cross product x : R? x R?* — R3 satisfying

(x1,y1, 21) X (X2, Y2, 22) = (Y122 — Y221, 21T2 — 22%1, T1Y2 — LaY1).

Example 3.1. If p and ¢ are two distinct points in R3 then v
R — R? with
yit—(1—=t)-p+t-q
parametrizes the straight line through p = v(0) and ¢ = (1).

Example 3.2. Let {Z, W} be an orthonormal basis for a 2-plane
Vin R? r € RT and p € R?. Then v : R — R3 with

v:it—p+r-(cost-Z+sint- W)

parametrizes a circle in the affine 2-plane p + V' with center p and
radius 7.

Example 3.3. If r,b € R then v : R — R3 with
v=(z,y,z):t+— (r-cost,r-sint,b-t)

parametrizes a helix. It is easy to see that 22 + y? = 72 so the image
7(R) lies on the circular cylinder

{(z,y,2) e R’| 2* + 4" = 1%}
of radius r.

Definition 3.4. Let v : I — R? be a curve parametrized by arc-
length. Then the curvature x : I — R of v is defined by

r(s) = [i(s)l-

Theorem 3.5. Lety : I — R? be a curve parametrized by arclength.
Then its curvature k : I — RS wanishes identically if and only if the
geometric curve ¥(1I) is contained in a line.

15
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PROOF. The curvature x(s) = |9(s)| vanishes identically if and
only if there exist a unit vector Z € S? and a point p € R3 such that

Ws)=p+s-2
i.e. the geometric curve v(I) is contained in a straight line. O

Definition 3.6. A curve v : I — R3, parametrized by arclength,
is said to be a Frenet curve if its curvature s is non-vanishing i.e.
k(s) # 0 for all s € I.

For a Frenet curve 7 : I — R?® we define the tangent T : [ — S?
along v by

T(s) =4(s),
the principal normal N : [ — S? with
Ny = ) )
5(s)l

k(s)
and the binormal B : I — S? as the cross product
B(s) =T(s) x N(s).

The curve v : I — R3 is parametrized by arclength so

0= L {3(),4()) = 2 (), 3(5))
This means that for each s € I the set {T'(s), N(s), B(s)} is an or-

thonormal basis for R3. It is called the Frenet frame along the curve.

Definition 3.7. Let 7 : I — R3 be a Frenet curve. Then we define
the torsion 7: I — R by

7(s) = (N(s), B(s))-

Note that the torsion is a measure of how fast the principal normal
N(s) =4(s)/|7(s)| is bending in the direction of the binormal B(s), or
equivalently, out of the plane generated by T'(s) and N(s).

Theorem 3.8. Let v : I — R3 be a Frenet curve. Then the Frenet
frame satisfies the following system of ordinary differential equations.

T(s) 0 k(s) 0 T(s)
N(s) = | —k(s) 0 7(s)| | N(s)
B(s) 0 —7(s) O B(s)

PROOF. The first equation is a direct consequence of the definition
of the curvature
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We get the second equation from

and
(N(s), B(s)) = ~ 25N (s), B(s)) — (N(s), B(s)) = 7(s).
When differentiating ( ) T'(s) x N(s) we obtain
B(s) = T(s)x N(s) +T(s) x N(s)

= #(s) - N(s) x N(s) +T(s) x N(s)
hence (B(s),T(s)) = 0. The definition of the torsion

(B(s), N(s)) = —(B(s), N(s)) = —7(s)

and the fact

2 (B(s), B(s)) = 5-(B(s), B(s)) =0

give us the third and last equation. 0

Theorem 3.9. Let v : I — R3 be a Frenet curve. Then its torsion
7 : I — R wanishes identically if and only if the geometric curve v(I)
18 contained in a plane.

Proor. It follows from the third Frenet equation that if the torsion
vanishes identically then

d

= 01(s) =7(0), B(s)) = {T'(s), B(s)) = 0.
Because (v(0) —~(0), B(0)) = 0 if follows that (y(s) —v(0), B(s)) =0
for all s € I. This means that y(s) lies in a plane containing ~v(0) with
constant normal B(s).

Let us now assume that the geometric curve y(I) is contained in a
plane i.e. there exists a point p € R® and a normal n € R3\ {0} to the
plane such that

(v(s) =p,n) =0

for all s € I. When differentiating we get

<T<3)’n> = <7(3>7n> =0
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and

((s),n) =0
so (N(s),n) = 0. This means that n is a constant multiple of B(s). so
B'(0) = 0 and hence 7 = 0. O

The following result is called the fundamental theorem of curve
theory. It tells us that a Frenet curve is, up to Euclidean motions,
completely determined by its the curvature and the torsion.

Theorem 3.10. Let s : I — RT and 7 : I — R be two differentiable
functions. Then there exists a Frenet curve v : I — R? with curvature
k and torsion 7. If 7 : I — R3 is another such curve, then there exists
an orthogonal matriz A € O(3) and an element p € R® such that

V(s) = A-7(s) +p.

PRrROOF. The proof is based on the well-known theorem of Picard-
Lindelof formulated here as Fact 3.11, see Exercise 3.6. 0

Fact 3.11. Let f : U — R" be a continuous map defined on an
open subset U of R x R™ and L € R such that
for all (t,z),(t,y) € U. If (to,x9) € U then there exists a unique local
solution x : I — R™ to the following initial value problem

7'(t) = f(t, (1), w(to) = zo.

Definition 3.12. Let v : I — R3 be a regular curve in R?® not
necessarily parametrized by arclength. Let ¢ : J — I be a C3-function
such that the composition a = yot: J — R? is a curve parametrized
by arclength. Then we define the curvature x : I — Rt of v : I — R3

by

K(t(s)) = &(s),
where 5 : J — RT is the curvature of a. In the same manner we define
the torsion 7 : I — R of v by

7(t(s)) = 7(s),

where 7 : J — R is the torsion of «.

We are now interested in deriving formulae for 7 and x in terms of
~v. By differentiating v(t) = a(s(t)) we get

7(t) = als(t) - 5'(t),
(V(),7' (1) = 5'(t)*(a(s(t)), (s(t))) = 5'(t)?
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and p
20y"(1),7/(8) = = (s'(8)°) = 2 8'(2) - 5"(8).
When differentiating once more we yield

et SO0 = 50 (1)
(1) - (s() = i ,

/ 2 " / " /
sty = LA S0
V() @), Y () = ()" (#), 7' ()
' (8)]*
V() x (77(t) X 7'(1))
[y (£)*
Finally we get a formula for the curvature of v : I — R? by
K(t) = R(s(t))
= |a(s(t))]
Y @) - [v"(t) x v'(1)]
' (8)]*
[y'(t) x 7" ()]
[y (8)1°
Proposition 3.13. Let v : I — R? be a reqular curve in R3 its
curvature Kk and torsion T satisfy

_ @) xy"(0)
(t) - / 3 ’
[ ()]
det[y'(2),7"(¢), 7" (¥)]
T(t) = ! " 2 '
() x 7 (0)]

ProoF. We have already proven the first equation. For the second
one, see Exercise 3.5. O

Corollary 3.14. Let v : I — R3 be a reqular curve in R®. Then

(1) the geometric curve y(I) is contained in a line if and only if
7' (t) and ~"(t) are linearly dependent for allt € I,

(2) the geometric curve ~y(I) is contained in a plane if and only if
Y (t), v"(t) and ~"(t) are linearly dependent for allt € I.

PRrROOF. The statement is a direct consequence of Theorem 3.5,
Theorem 3.9 and Proposition 3.13. U
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Exercises

Exercise 3.1. Calculate the curvature s and the torsion 7 of the
helix parametrized by v : R — R3,

vt (r-cost,r-sint,b-t)
with r,b € RT.

Exercise 3.2. Construct a regular curve v : R — R3 with constant
curvature x € Rt and constant torsion 7 € R.

Exercise 3.3. Prove that the curve vy : (—7/2,7/2) — R? with
vt (2cos’t — 3,sint — 8, 3sin®t + 4)
is regular. Determine whether the image of 7 is contained in

ii) a straight line in R? or not,
i) a plane in R? or not.

Exercise 3.4. Show that the curve v : R — R? given by
yt) = (B + 23,85 —t+ 1,24t +1)
is regular. Determine whether the image of 7 is contained in

ii) a straight line in R? or not,
i) a plane in R? or not.

Exercise 3.5. Prove the torsion formula in Proposition 3.13.

Exercise 3.6. Use your local library to find a proof of Theorem
3.10.

Exercise 3.7. Let v : R — R? be a regular map parametrizing a
closed curve in R? by arclength. Use your local library to find a proof
of Fenchel’s theorem i.e.

L(y) = /0 k(s)ds > 2m,

where L is the period of ~.



CHAPTER 4

Surfaces in the Euclidean space R?

In this chapter we introduce the notion of a regular surface in three
dimensional Euclidean space. We give several examples of surfaces and
study differentiable maps between them.

Definition 4.1. A non-empty subset M of R? is said to be a reg-
ular surface if for each point p € M there exist open neighbourhoods
V in R? and U in R? and a bijective C*°-map X : U — V N M, such
that X is a homeomorphism and

Xu(q) x Xy(q) #0.

for all ¢ € U. The map X : U — V N M is said to be a local
parametrization of M and the inverse X' : VN M — U a local
chart or local coordinates on M. An atlas on M is a collection

A={(Von M, XY a €}
of local charts on M such that A covers the whole of M i.e.
M =] VanM).

Example 4.2. Let f: U — R be a differentiable function from an

open subset U of R?2. Then X : U — M with
X+ (u,0) = (u, v, f(u,v))
is a local parametrization of the graph
M = {(u, v, f(u,v))] (u,v) € U}
of f. The corresponding local chart X~ : M — U is given by
X i(z,y.2) = (z,9).
Example 4.3. Let S? denote the unit sphere in R? given by
S? ={(z,y,2) € R*| 2* + y* + 2* = 1}.

Let N be the north pole N = (0,0,1) and S be the south pole S =
(0,0,—1) on S?, respectively. Put Uy = S? \ {N}, Us = S*\ {S} and

21
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define xy : Uy — R?, 25 : Us — R? by
1
TN : (x,y, Z) — ﬁ(xay)a

zs: (z,y,2) — H_—Z(x,y).

Then A = {(Un,zy), (Us,xs)} is an atlas on S2.

Our next important step is to prove the implicit function theorem
which is a useful tool for constructing surfaces in R3. For this we use
the classical inverse mapping theorem stated below. Note that if

F:U—R™

is a differentiable map defined on an open subset U of R" then its
differential dF'(p) : R® — R™ at a point p € U is a linear map given by
the m X n matrix

OF/0x1(p) ... OF;/0x,(p)

dF(p) = : ;
0F,,/0x1(p) ... OF,/0x,(p)

If v: R — U is a curve in U such that v(0) = p and 4(0) = Z then

the composition F'oy: R — R™ is a curve in R™ and according to the
chain rule we have

AF () 7 = 5 (F o (0)lo

which is the tangent vector of the curve F o~y at F(p) € R™.

Hence the differential dF(p) can be seen as a linear map
mapping tangent vectors at p € U to tangent vectors at the
image F(p) € R™. We shall later generalize this to the surface
setting.

The following fact is the classical inverse mapping theorem.

Fact 4.4. Let U be an open subset of R" and F' : U — R" be a
differentiable map. If p € U and the differential

dF(p) : R" - R"

of F' at p is invertible then there exist open neighbourhoods U, around
p and Uy around ¢ = F(p) such that f = Fly, : U, — U, is bijective
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and the inverse f~1: U, — U, is a differentiable map. The differential
df 1 (q) of f71 at q satisfies

df~'(q) = (dF(p))™"
i.e. it is the inverse of the differential dF (p) of F' at p.

Before stating the implicit function theorem we remind the reader
of the following notions.

Definition 4.5. Let m,n be positive integers, U be an open subset
of R" and F' : U — R™ be a differentiable map. A point p € U is said
to be critical for F' if the differential

dF(p):R" — R™

is not of full rank, and regular if it is not critical. A point ¢ € F(U)
is said to be a regular value of F' if every point of the pre-image
F~'({q}) of ¢ is regular and a critical value otherwise.

Note that if n > m then p € U is a regular point of
F=(F,...,F,):U—R"

if and only if the gradients VFi,..., VF,, of the coordinate functions
... F, : U — R are linearly independent at p, or equivalently, the
differential dF'(p) of F' at p satisfies the following condition

det(dF (p) - (dF(p))") # 0.

The following important result is often called the implicit function
theorem.

Theorem 4.6. Let f : U — R be a differentiable function defined
on an open subset U of R® and q be a reqular value of f i.e.
(Vf)p) #0
for allp in M = f~*({q}). Then M is a reqular surface in R3.

PROOF. Let p be an arbitrary element of M. The gradient V f(p)
at p is non-zero so we can, without loss of generality, assume that

f-(p) # 0. Then define the map F : U — R? by
F(z,y,2) = (z,y, f(z,y,2)).
Its differential dF'(p) at p satisfies

1 0 0
dF(p)=1| 0 1 0 |,
fo fy [
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so the determinant det dF'(p) = f. is non-zero. Following the inverse
mapping theorem there exist open neighbourhoods V' around p and
W around F(p) such that the restriction F|y : V — W of F to V is
invertible. The inverse (F|y)~! : W — V is differentiable of the form
(u, v, 1) = (u, v, g(u,v,t)),
where ¢ is a real-valued function on W. It follows that the restriction
X=F'; :W-R®
to the planar set
W ={(u,v,t) € W|t=q}

is differentiable, so X : W — VN Mis alocal parametrization of the
open neighbourhood V' N M around p. Since p was chosen arbitrarily
we have shown that M is a regular surface in R3. 0

We shall now apply the implicit function theorem to construct ex-
amples of regular surfaces in R3.

Example 4.7. Let f : R® — R be the differentiable function given
by
fla,y.2) = a® +y* + 2%
The gradient V f(p) of f at p satisfies V f(p) = 2p, so each positive
real number is a regular value for f. This means that the sphere
Sp={(z,y,2) eR’| 2® +y* +2° =17} = [T ({r"})
of radius r is a regular surface in R3.

Example 4.8. Let r, R be real numbers such that 0 < r < R and
define the differentiable function

f:U={(2,y,2) eR}| 2* +y* A0} = R

flz,y,2) =22+ (/22 + 92 — R)?

and let T? be the pre-image

) ={(y.2) €Ul 2 + (Va2 + 9 — R =7}

The gradient Vf of f at p = (z,y, z) satisfies

V() = ﬁmm TF —R).y(VET 5~ R).:VE T ).

If peT? and Vf(p) = 0 then z = 0 and

Vip) = 2

\/xQ:erz(ﬂ%y’O) # 0.

by
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This contradiction shows that 72 is a regular value for f and that the
torus 77 is a regular surface in R3.

Definition 4.9. A differentiable map X : U — R? from an open
subset U of R? is said to be a regular parametrized surface in R?
if for each point ¢ € U

Xu(q) x Xy(q) #0.

Definition 4.10. Let M be a regular surface in R?. A differen-
tiable map X : U — M defined on an open subset of R? is said to
parametrize M if X is surjective and for each p in U there exists an
open neighbourhood U, of p such that X|y, : U, — X(U,) is a local
parametrization of M.

Example 4.11. It is easily seen that the torus 772 in Example 4.8
is obtained by rotating the circle

{(z,0,2) € R*| 2>+ (z — R)* =%}

in the (x,z)-plane around the z-axes. We can therefore parametrize
the torus by X : R? — T2 with

cosv —sinv 0 R+ rcosu
X : (u,v) — [sinv cosv 0 0
0 0 1 rsinu

Example 4.12. Let v = (1,0, 2) : [ — R3 be differentiable curve
in the (z, 2)-plane such that r(s) > 0 and 7(s)*+2(s)? = 1 for all s € I.
By rotating the curve around the z-axes we obtain a regular surface
of revolution parametrized by X : I x R? — R? with

cosv —sinv 0 r(u) r(u) cosv
X(u,v) = | sinv cosv 0 0 | =|r(u)sinv
0 0 1 z(u) z(u)
The surface is regular because the vectors
7(u) cosv —r(u)sinv
X, = | 7(w)sinv |, X,=| r(u)cosv
Z(u) 0

are linearly independent.

Definition 4.13. Let M be a regular surface in R3. A continuous
map v : I — M, defined on an open interval I of the real line, is said
to be a differentiable curve on M if it is differentiable as a map into
R3.



26 4. SURFACES IN THE EUCLIDEAN SPACE R?

Definition 4.14. Let M be a regular surface in R?. A real valued
function f : M — R on M is said to be differentiable if for each
local parametrization X : U — M of M the composition foX : U — R
is differentiable.

Definition 4.15. A map ¢ : M; — M, between two regular sur-
faces in R? is said to be differentiable if for all local parametrizations
(Ul,Xl) on M1 and (UQ,XQ) on M2 the map

X;topo Xi|y: U — R?,
defined on the open subset U = X7 (X (U;) N ¢~ (X2(Uy))) of R?, is
differentiable.

The next very useful proposition generalizes a result from classical
real analysis of several variables.

Proposition 4.16. Let M, and M, be two reqular surfaces in R3.
Let ¢ : U — R? be a differentiable map defined on an open subset of R?
such that My is contained in U and the image ¢(My) is contained in
Ms. Then the restriction ¢|y, : My — My is differentiable map from
M1 to Mz.

PROOF. See Exercise 4.2. O
Example 4.17. We have earlier parametrized the torus

T° ={(z,y,2) €Ul 2 + (Va* + 4> = R)* =17}
with the map X : R?* — 7% defined by

cosv —sinv 0 R+ rcosu
X : (u,v) — | sinv cosv 0 0
0 0 1 rsinu

Let us now map the torus into R? with the following formula

cosv —sinv 0 cosu COS U COS U
sinv cosv O 0 — | sinvcosu
0 0 1 sinu sinu

It is easy to see that this gives a well-defined map N : 7% — S? from
the torus to the unit sphere

S? = {(z,y,2) € R*| 2* +y* + 22 = 1}.
In the local coordinates (u,v) on the torus the map is given by

COS ¥ COS U
N(u,v) = [ sinvcosu
sinu
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It now follows from Proposition 4.16 that N : T? — S? is differentiable.

Proposition 4.18. Let ¢1 : M7 — My and ¢5 : My — Ms be dif-
ferentiable maps between reqular surfaces in R3. Then the composition
20 ¢y : My — Mjy is differentiable.

PROOF. See Exercise 4.4. O

Definition 4.19. Two regular surfaces M; and M, in R? are said
to be diffeomorphic if there exists a bijective differentiable map ¢ :
M, — M, such that the inverse ¢! : My — M, is differentiable. In
that case the map ¢ is said to be a diffeomorphism between M; and
Mg.
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Exercises

Exercise 4.1. Determine whether the following subsets of R? are
regular surface or not.

My = {(z,y,2) eR| 2® +y* =z},
My = {(z,y,2) eR’| 2® +y* =27},
My = {(z,y,2) e R} 2 +¢* - 22 =1},
My, = {(x,y,2) € R* 2* +y* = cosh z},

Ms = {(z,y,2) € R} zsinz = ycos z}.
Find a parametrization for those which are regular surfaces in R3.
Exercise 4.2. Prove Proposition 4.16.

Exercise 4.3. Prove that the map ¢ : 7% — S? in Example 4.17 is
differentiable.

Exercise 4.4. Prove Proposition 4.18.
Exercise 4.5. Construct a diffeomorphism ¢ : S? — M between
the unit sphere S? and the ellipsoid
M = {(z,y,2) € R*| 2* + 2y* +32% = 1}.
Exercise 4.6. Let U = {(u,v) € R} —m<u<m 0<v <1},
define X : U — R3 by X(u,v) = (sinu,sin2u,v) and set M = X (U)

Sketch M and show that X is differentiable, regular and injective but
X! is not continuous. Is M a regular surface in R? ?



CHAPTER 5

The Tangent Plane

In this chapter we introduce the notion of the tangent plane at a
point of a regular surface. We show that this is a two dimensional
vector space. We then define the tangent map of a differentiable map
between surfaces.

Definition 5.1. Let M be a regular surface in R? and p be a point
on M. Then the tangent space T,M of M at p is the set of all
tangents 4(0) to Cl-curves v : I — M such that v(0) = p.

Let M be a regular surface in R®, p € M and X : U — M be a local
parametrization of M such that 0 € U and X(0) =p. Let o : [ - U
be a C'-curve in U such that 0 € I and «(0) = 0 € U. Then the
composition vy = X oa : [ — X(U) is a C'-curve in X (U) such that
7(0) = p. Since X : U — X(U) is a homeomorphism it is clear that
any curve in X (U) with (0) = p can be obtained this way.

It follows from the chain rule that the tangent §(0) of v : [ — M
at p satisfies

7(0) = dX(0) - &(0),

where dX (0) : R? — R3 is the differential of the local parametrization
X : U — M. The differential is a linear map and the condition

X, X Xy £ 0
implies that dX (0) is of full rank i.e. the vectors
X, =dX(0)-e; and X, =dX(0)-ey
are linearly independent. This shows that the image
{dX(0)-Z| Z € R?*}
of dX(0) is a two dimensional subspace of R3. If (a,b) € R? then

dX(0) - (a,b) = dX(0)- (ae; + bes)
= adX(0)-e;+bdX(0)- ey
= aX, +bX,.

29
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It is clear that T,M is the space of all tangents ¥(0) to C'-curves
v : 1 — M in M such that y(0) = p. We have proved the following
result.

Proposition 5.2. Let M be a reqular surface in R® and p be a point
on M. Then the tangent space T,M of M at p is a 2-dimensional real
vector space.

Example 5.3. Let v : I — S? be a curve into the unit sphere in
R? with v(0) = p and %(0) = Z. The curve satisfies

(V(),7(1) =1
and differentiation yields
(Y(0),7(®)) + {(v(1),¥(t)) = 0.

This means that (Z, p) = 0 so every tangent vector Z € 1,S™ must be
orthogonal to p. On the other hand if Z # 0 satisfies (Z, p) = 0 then
v: R — S?% with

vt —cos(t|Z]) - p+sin(t|Z]) - Z/|Z|

is a curve into S? with v(0) = p and 4(0) = Z. This shows that the
tangent space 7,52 is given by

T,S? = {Z € Y| (p, Z) = 0},
Example 5.4. Let us parametrize the torus

T2:{($,y,z) S U| Z2+(\/W_R)2:T2}
by X : R? — T? with

cosv —sinv 0 R+ rcosu
X :(u,v)— [ sinv cosv 0 0
0 0 1 rsinu

By differentiating we get a basis {X,, X, } for the tangent space T,T?
at p = X (u,v) with

cosvsinu —sinv
Xy =—r|sinvsinu |, X,=(R+rcosu)| cosv
COS U 0

Proposition 5.5. Let M; and My be two reqular surfaces in R3,
p € My, q € My and ¢ : My — M, be a differentiable map with
é(p) = q. Then the formula

160) :30) = 5 (607() .,
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determines a well-defined linear map do(p) = T,M; — T,M,. Here
v : I — My is any C'-curve satisfying v(0) = p,

PrROOF. Let X : U — M; and Y : V — M> be local parametriza-
tions such that X(0) = p, Y(0) = ¢ and ¢(X(U)) contained in Y (V).
Then define

F=Y'opoX:U— R?
and let  : I — X be a C'-curve with «(0) = 0 and &(0) = (a,b) € R%
If
vy=Xoa:I— X(U)
then v(0) = p and
4(0) =dX(0) - (a,b) = aX, + bX,.
The image curve po~y: I — Y (V) is given by poy =Y o F o« so the
chain rule implies that

C(607(1),y = dAY(F(0))-dF(0)-a(0)

= Y () S (Foolt),,
This means that do(p) : T,M; — T,M, is given by
do(p) : (aX, + bX,) — dY (F(0)) - dF(0) - (a,b)
and hence clearly linear. O

Definition 5.6. Let M; and M, be two regular surfaces in R3,
p € My, g € My and ¢ : M; — M, be a differentiable map such that
o(p) = q. The map do(p) : T,M, — T, M, is called the differential or
the tangent map of ¢ at p.

The classical inverse mapping theorem generalizes to the surface
setting as follows.

Theorem 5.7. Let ¢ : M7 — My be a differentiable map between
surfaces in R3. If p is a point in M, ¢ = ¢(p) and the differential
dqb(p) . Tle — T¢(p)M2
is bijective then there exist open neighborhoods U, around p and U,

around q such that ¢|y, : U, — Uy is bijective and the inverse (¢|y,) " :
U, — U, is differentiable.

PROOF. See Exercise 5.1 O
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Exercises

Exercise 5.1. Find a proof for Theorem 5.7



CHAPTER 6

The First Fundamental Form

In this chapter we introduce the first fundamental form of a regular
surface. This enables us to measure angles between tangent vectors,
lengths of curves and even distances between points on the surface.

Definition 6.1. Let M be a regular surface in R?® and p € M.
Then we define the first fundamental form 7, : T,M x T,M — R of
M at p by

]p(Za W) = <Z7 W>>
where (-, -) is the Euclidean scalar product in R? restricted to the tan-
gent space T,M of M at p. Properties of the surface which only depend
on its first fundamental form are called inner properties.

Definition 6.2. Let M be a regular surface in R® and v : I — M
be a C'-curve in M. Then the length L(v) of v is defined by

- [ VE@Aw
As we shall now see a regular surface in R? has a natural distance

function d. This gives (M, d) the structure of a metric space.

Proposition 6.3. Let M be a reqular surface in R3. For two points
p,q € M let Cp, denote the set of C'-curves v : [0,1] — M such that
¥(0) = p and v(1) = q and define the function d : M x M — RJ by

d(p,q) = mf{L(7)| 7 € Cpq}-

Then (M,d) is a metric space i.e. for all p,q,r € M we have
(i) d(p,q) >
()ﬂp)—odmdmwﬁp—%
(iii) d(p,q) = d(q,p),

()d@,)ﬁd@,)+d0ﬂ)

PROOF. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). O

Definition 6.4. A differentiable map ¢ : M; — M, between two
regular surfaces in R? is said to be isometric if for each p € M the

33
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differential do(p) : T,M — Ty M preserves the first fundamental
forms of the surfaces involved i.e.

(Z,W) = (do(p) - Z,de(p) - W)
for all Z, W € T,M. An isometric diffcomorphism ¢ : M; — My is

said to be an isometry. Two regular surfaces M; and M, are said to
isometric if there exists an isometry ¢ : My — Ms between them.

Definition 6.5. A differentiable map ¢ : M; — M, between two
regular surfaces in R? is said to be conformal if there exists a differ-
entiable function A\ : M; — R such that for each p € M the differential
dp(p) : TyM — Ty M satisfies

(de(p) - Z,dd(p) - W) = e*NZ, W)

for all Z,W € T,M. Two regular surfaces M; and M, are said to
conformally equivalent if there exists a conformal diffeomorphism
¢ : M, — M, between them.

Let M be a regular surface in R®* and X : U — M be a local
parametrization of M. At each point X (u,v) in X (U) the tangent
space is generated by the vectors X, (u,v) and X, (u,v). For these we
define the matrix-valued map [dX] : U — R**3 by

[AX] = [Xu, X'
and the real-valued functions E, F,G : U — R by the symmetric matrix
(IE g) — [dX] - [dX]".
containing the scalar products.
E=(X,,X.,), F=(X,X,)=(X,,X,) and G=(X,,X,).
This induces a so called metric

ds® = Edu® + 2Fdudv + Gdv?

on the parameter region U as follows: For each point ¢ € U we have a
scalar product ds? : R* x R* — R defined by

5 _ +(E(@) F(qg)
gz w) = 2 <F(q) G(q))w

Let oy = (ug,v1) : I — U and ay = (ug,v3) : I — U be two curves in U
meeting at a1(0) = ¢ = ay(0). Further let v = X oay and y9 = X o
be the image curves in X (U) meeting at 71(0) = p = 72(0). Then the
differential dX (q) is given by

dX(q) : (a,b) — aX,(q) +bX,(q)
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so at ¢ we have
dsi(dn,d) = df <F G) i
= Fuyts + F(t 0y + u901) + G109
= (1 Xy + 01Xy, U Xy + 02.X,)
= (dX -éy,dX - ag)
= <;y1’72>'
The above calculations show that the diffeomorphism X : U —
X (U) preserves the scalar products so it is actually an isometry. It
follows that the length of a curve aw: I — U in U is exactly the same
as the length of the corresponding curve X o v in X (U). We have

"pulled back” the first fundamental form on the surface X(U) to a
metric on U.

Definition 6.6. Let M be a regular surface in R® and X : U — M
be a local parametrization of M where U is a measurable subset of the
plane R?. Then we define the area of X (U) by

AX(U)) = /U\/EG — F2dudv.
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Exercises

Exercise 6.1. Calculate the first fundamental form of the para-
metrized surface by X : RT x R — M with
0

), rsin asin(——

sin v sin «v
Find an equation of the form f(x,y,2) = 0 describing the surface.

Xo(r, ) = (rsinacos( ), 7 Ccos ).

Exercise 6.2. Find an isometric parametrization X : R? — M of
the circular cylinder

M = {(z,y,2) € R*| 2* +9* = 1}.

Exercise 6.3. Let M be the unit sphere S? with the two poles
removed. Prove that Mercator’s parametrization X : R? — M of M
with ) _

cosv sinv sinhwv

X(u,v) = ( )

coshu’ coshu’ cosh u
is conformal.

Exercise 6.4. Prove that the first fundamental form of a regular
surface M in R? is invariant under Euclidean motions.

Exercise 6.5. Let X,Y : R? — R? be the parametrized surfaces
given by
X (u,v) = (coshucosv, coshusinv, u),
Y (u,v) = (sinh u cos v, sinh u sin v, v)
and for each 6 € R define Z, : R? — R? by
Zy(u,v) = cos - X(u,v) +sinb - Y (u,v).

Calculate the first fundamental form of Zy. Find equations of the form
f(x,y, z) = 0 describing the surfaces X = Z; and Y = Z,/,. Compare
with Exercise 4.1.

Exercise 6.6. Calculate the area A(T?) of the torus

T? = {(z.y,2) €U| 2’ + (Va* + 4> = R)* =17},



CHAPTER 7

Curvature

In this chapter we define the shape operator of an orientable surface
and its second fundamental form. These measure the behaviour of the
normal of the surface and lead us to the notions of normal curvature,
Gaussian curvature and mean curvature.

Definition 7.1. Let M be a regular surface in R?. A differentiable
map N : M — S? with values in the unit sphere is said to be a Gauss
map for M if for each point p € M the image N(p) is perpendicular
to the tangent space T, M. The surface M is said to be orientable if
such a Gauss map exists. A surface M equipped with a Gauss map is
said to be oriented.

Let M be an oriented regular surface in R?® with Gauss map N :
M — S%?and v : I — M be a curve on M parametrized by arclength
such that (0) = p and 4(0) = Z. At the point p the second derivative
4(0) has a natural decomposition

§(0) = 5(0)" +5(0)

into its tangential part, contained in 7,,M, and its normal part in the
orthogonal complement T),M=.

Along the curve the normal N(v(s)) is perpendicular to the tangent
4(s) so for the normal part of 4(0) we have

F(0) ™ = (3(0), N(p))N(p)

—(¥(0), dN(p) - ¥(0)) N (p)

—(Z,dN(p) - Z)N (p).
This implies that the normal component 4(0)"™ is completely deter-
mined by the value of 4(0) and the values of the Gauss map along any
curve through p with tangent 4(0) = Z at p.

If N: M — S?is a Gauss map for a regular surface M and p € M,

then N (p) is a unit normal to both the tangent planes T, M and Ty, S*
so we can make the identification T),M = Ty, S2.
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Definition 7.2. Let M be an oriented regular surface in R? with
Gauss map N : M — S? and p € M. Then the shape operator
Sy T,M — T,M
of M at p is the linear endomorphism given by
S,(2) = —AN(p) - Z
forall Z € T,M.

Proposition 7.3. Let M be an oriented reqular surface with Gauss
map N : M — S? and p € M. Then the shape operator S, : T,M —
T,M s symmetric i.e.

(Sp(2), W) = (Z,5,(W))
forall Z,ZW € T,M.

PrRoOOF. Let X : U — M be a local parametrization of M such
that X(0) =p and N : X(U) — S? be the Gauss map on X (U) given

u,v) = Xu(u,v) XX”<U’U>
N(u,v) | X (u,v) x X, (u,v)]

The vector N o X (u,v) is orthogonal to the tangent plane T,M so

0= di<NoX7Xu> = (dN(p) - Xp, Xu) + (N 0 X, Xo)
(%

and

d
T du
By subtracting the second equation from the first one and employing
the fact that X,, = X,, we yield

The symmetry of the linear endomorphism dN(p) : T,M — T,M is
a direct consequence of this last equation and the following obvious

relations
(dN(p) - Xu, Xu) = (X, AN (p) - Xu),
<dN(p) ’ XvaXv> = <Xv7 dN(p) 'Xv>'
The statement follows from the fact that S, = —dN(p). O

0 (NoX,X,) = (dN(p) - Xu, Xy) + (N o X, Xyp)

Corollary 7.4. Let M be an oriented reqular surface in R® with
Gauss map N : M — S? andp € M. Then there exists an orthonormal
basis {Z1, Zy} for the tangent plane T,M such that

Sp(Zl> = )\1Z1 and Sp(ZQ) = )\QZQ,
for some A, Ay € R.
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Definition 7.5. Let M be an oriented regular surface in R? with
Gauss map N : M — S? and p € M. Then we define the second
fundamental form I, : T,M x T,M — R of M at p by

HP(Z7 W) - <SP<Z)7 W>

It is an immediate consequence of Corollary 7.4 that the second
fundamental form is symmetric and clearly bilinear.

Definition 7.6. Let M be an oriented regular surface in R? with
Gauss map N : M — S? p € M and Z € T,M. Then the normal
curvature k,(Z) of M at p in the direction of Z is defined by

kp(Z) = (3(0), N(p)),
where v : I — M is any curve parametrized by arclength such that

7(0) = p and 4(0) = Z.

Proposition 7.7. Let M be an oriented reqular surface in R with
Gauss map N : M — S? p € M and Z € T,M. Then the normal
curvature k,(Z) of M at p in the direction of Z satisfies

kp(2) = (Sp(2), Z2) = IL,(Z, Z).

PROOF. Let v be a curve parametrized by arclength such that
7(0) = p and 4(0) = Z. Along the curve the normal N(~(¢)) is per-
pendicular to the tangent /(¢). This means that

0 = S NGO
= (300, N} + (0, AN (D) -5,

As a direct consequence we get

kp(2) = (5(0), N(p))
= —(Z,dN(p)-2)
= (5(2),2).
O

For an oriented regular surface M with Gauss map N : M — S?
and p € M let Tle be the unit circle in the tangent plane T),M i.e.

oM ={Z e T,M| |Z| = 1}.
Then define the real-valued function £, : Tle — R by
ky:Z v ky(2).
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The unit circle is compact and k, is continuous so there exist two
directions Z;, Zy € T, le such that

kr(p) = kp(Z1) = max ky(Z)

ZeTIM

and

ko(p) = kp(Zy) = min k,(Z).

ZETIM
These are called principal directions at p and k;(p), k2(p) the corre-
sponding principal curvatures. A point p € M is said to be umbilic

Theorem 7.8. Let M be an oriented regqular surface in R with
Gauss map N : M — S* and p € M. Then Z € T, M is a principal
direction at p if and only if it is an eigenvector for the shape operator
Sy T,M — T,M.

PRrROOF. Let {Z;, Z5} be an orthonormal basis for the tangent space
T,M of eigenvectors to S, i.e.

Sp<Zl) = /\121 and Sp(Zg) = )\2Z2

for some A{, Ay € R. Then every unit vector Z € Tle can be written
as
Z(0) = cos0Z, +sinbZ,
and
ky(Z(0)) = (Sp(cosBZ; +sinbZ,),cos 02y + sin62Zs)
= cos”0(Sy(Z1), Z1) + sin® 6(S,(Z>), Z»)
+cos0sin0((S,(Z1), Z2) + (S,(Z2), Z1))
= M cos?f+ \ysin? 6.
If Ay = Ag then k,(Z(0)) = Ay for all # so any direction is both
principal and an eigenvector for the shape operator .S,.
If Ay # )Xy, then we can assume, without loss of generality, that
A1 > Ay. Then Z(6) is the maximal principal direction if and only if

cos’ = 1ie. Z = +Z; and clearly the minimal pricipal direction if
and only if sin?f = 1 ie. Z = +2,. O

Definition 7.9. Let M be an oriented regular surface in R? with
Gauss map N : M — S?. Then we define the Gaussian curvature
K : M — R and the mean curvature H : M — R by

1
K(p) =detS, and H(p) = 5 trace .S,

respectively. The surface M is said to be flat if K(p) =0 for all p € M
and minimal if H(p) = 0 for all p € M.
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Theorem 7.10. Let M be a connected, oriented regqular surface in
R?® with Gauss map N : M — S%. Then the shape operator S, : T,M —
T, M vanishes for all p € M if and only if M is contained in a plane.

Proor. If M is contained in a plane, then the Gauss map is con-
stant so the shape operator S, = —dN(p) = 0 at any point p € M.

Fix a point p € M, let ¢ be an arbitrary point on M and v : I — M
be a curve such that v(0) = ¢ and (1) = p. Then the real-valued
function f, : I — R with

fa(t) = (g =~(t), N(v(1)))
safisfies f,(0) = 0 and
fa(t) = = {3, N(y(1)) + (g = 7(1), AN (p) - (1)) = 0.
This implies that (¢ — ~(t), N(y(t))) = 0 for all £ € I. Hence

((¢—=p),N(p)) =0

for all ¢ € M so the surface is contained in the plain through p with
normal N (p). O

Let M be an oriented surface in R?® with Gauss map N : M — S%.
Let X : U — M be a local parametrization such that X (0) = p € M.
Then the tangent space T,M = T, S? is generated by X, and X, so
there exists a symmetric matrix

A — (all a12) c R2x2

Qa21 @22
such that the shape operator S, : T,M — T,,M satisfies

Sp(aXy, +b0X,) = aSy(X,)+bS,(Xy)
= a(anXy + anXy) + b(a12X, + a2 X))
= (anaX, + a2b) Xy, + (az1a + anb)X,.

This means that with respect to the basis {X,, X, } we have
s (5) = (o 2) )
Let [dX], [dN] : U — R**3 be given by
[dX] = [X,, X,]' and [dN] = [N,, N,]".
Then the definition S, = —dN(p) of the shape operator gives
—[dN] = A - [dX].
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Associated to the local parametrization X : U — M we have the
functions e, f,g : U — R given by

(; g) — _[AN]- [dX]"
— A-[dX] - [dX]"

E F
= 4 (F G) '
We now obtain the matrix A for the shape operator .S, by
-1
A - (€ I (E F
f g F G
B 1 e f\ (G -F
- EG-F2\[f g) \-F E )
This implies that the Gaussian curvature K and the mean curvature
H satisfy
eqg — f? and I — 16G—2fF—|—gE
EG — F? 2 EG — F?
Example 7.11. Let v = (1,0, 2) : I — R3 be a differentiable curve

in the (z, 2)-plane such that r(s) > 0 and 7(s)*+2(s)? = 1 for all s € I.
Then X : I x R? — R?® with

K =

cosv —sinv 0\ [r(u) r(u) cosv
X(u,v) = | sinv cosv 0 0 | =[r(usinv
0 0 1 z(u) z(u)

parametrizes a regular surface of revolution M. The linearly indepen-
dent tangent vectors

7(u) cosv —r(u)sinv
X, = | 7(w)sinv |, X,=| r(u)cosv
Z(u) 0
generate a Gauss map
cosv —sinv 0 —Z(u) —Z(u) cosv
N(u,v) = [ sinv cosv 0 0 = | —2(u )Sin’U
0 0 1 7(u) 7(u)

—r(u)sinv  r(u)cosv

)
( £) -3 )

ax] = (f(u)cosv ru sinv Z(u
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(6 1) = —lan-faxy

—Z(u)cosv —Z(u)sinv #(u)

N (Z(u)sinv —Z(u) cosw 0)
r(u)cosv —r(u)sinv
7(u)sinv  r(u)cosv

Z(u) 0
_ (r(u)z(u) — Z(u)r(u) 0 )
0 —z(u)r(u) )
eg — I
k= ze-pP
_ o E)r(u) (E(u)r(u) — 7 (u)i(u))
r(u)?

Theorem 7.12. Let M be a connected oriented reqular surface in
R3 with Gauss map N : M — S?. If every point p € M is an umbilic
point, then M 1is contained in a plane or in a sphere.

PrRoOOF. Let X : U — M be a local parametrization such that
U is connected. Since each point in X (U) is umbilic there exists a
differentiable function k£ : U — R such that the shape operator is given
by
Sy (aX, +bX,) — k(aX, +bX,)
so in particular
(NoX),=—-kX, and (NoX),=—kX,.

Furthermore

0 = (NOX)U»U—(NOX)Uu
= _k’UXu — kXU’U + kuX’U + quU
= —k, X, + k., X,.
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The vectors X, and X, are linearly independent so k, = k, = 0. The
domain U is connected which means that k is constant on U and hence
on the whole of M since M is connected.

If £ = 0 then the shape operator vanishes so the surface is contained
in a plane. If k # 0 then we define Y : U — R3 by

1
Y(u,v) = X(u,v) — EN(U’ v).
Then . )
dY:dX—EdN:dX—EkdXzo
so Y is constant and .
k2
which implies that X (U) is contained in a sphere with centre ¥ and
radius 1/k. Since M is connected the whole of M is contained in the
same sphere. O

X —Y|] =

Theorem 7.13. Let M be a compact reqular surface in R3. Then
there exists at least one point p € M such that the Gaussian curvature
K(p) is positive.

PROOF. See Exercise 7.6. O



7. CURVATURE 45

Exercises

Exercise 7.1. Let U be an open subset of R* and ¢ € R be a
regular value of the differentiable function f : U — R. Prove that the
regular surface M = f~1({q}) in R? is orientable.

Exercise 7.2. Determine the Gaussian curvature and the mean
curvature of the parametrized Enneper surface
ud v3
X(u,v) : (u— 5 +uw? v — 0 +vu?, u? — v?).
Exercise 7.3. Determine the Gaussian curvature and the mean
curvature of the cateniod M parametrized by X : R x Rt — R? with
2 2

rr cosf, T sinf,log ).

X:(0,r)— (1

r

Find an equation of the form f(z,y,z) = 0 describing the surface M.
Compare with Exercise 6.5.

Exercise 7.4. Prove that the second fundamental form of an ori-
ented regular surface M in R? is invariant under Euclidean motions.

Exercise 7.5. Let X,Y : R? — R3 be the parametrized surfaces
given by
X (u,v) = (coshucosv, coshusinv, u),

Y (u,v) = (sinh u cos v, sinh u sin v, v)
and for each § € R define Z, : R? — R? by
Zy(u,v) = cos - X(u,v) +sinf - Y (u,v).

Calculate the principal curvatures kq, ks of Zy. Compare with Exercise
6.5.

Exercise 7.6. Prove Theorem 7.13.

Exercise 7.7. Let v : R — R? be a regular curve, parametrized by
arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of ~, respectively. Let r be a positive real
number and assume that the r-tube M around ~ given by X : R? — R3
with

X(s,0) — v(s) +r(cosB - n(s) +sinb - b(s))

is a regular surface in R®. Determine the Gaussian curvature K of M
in terms of s, 60,7, k(s) and 7(s).
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Exercise 7.8. Let M be a regular surface in R*, p € M and {Z, W}
be an orthonormal basis for T,M. Let k,(#) be the normal curvature
of M at p in the direction of cosfZ + sin#W. Prove that the mean
curvature H satisfies

Hp) = — /O " 1 (0)d6.

" or

Exercise 7.9. Let M be an oriented regular surface in R® with
Gauss map N — S2. Let X : U — M be a local parametrization of

M and A(N o X(U)) be the area of the image N o X(U) on the unit
sphere S2. Prove that

A(N o X(U)) = /X(U) KdA,

where K is the Gaussian curvature of M. Compare with Exercise 3.7.

Exercise 7.10. Let a be a positive real number and U be the open
set
U={(x,y,2) € R?| a(y* + 2*) < z}.
Prove that there does not exist a complete regular minimal surface M
in R? which is contained in U.

Exercise 7.11. Let X : U — R? be a regular parametrized surface
in R? with Gauss map N : M — S? and principal curvatures k; = 1/7;
and ko = 1/rs. respectively. Let r € R be such that X, : U — R? with

X (u,v) = X(u,v) +7- N(u,v)

is a regular parametrized surface in R®. Prove that the principal cur-
vatures of X, satisfy

Fa(r) = L

(ro—7)

1
1) and ky(r) =

Exercise 7.12. Let M be a connected surface in R with Gaussian
curvatures K and mean curvature H satisfying

/ H?dA = / KdA.
M M

Prove that if there exists a point p € M such that K(p) > 0 then M is
a part of a sphere.



CHAPTER 8

Theorema Egregium

In the last chapter we defined the Gaussian curvature at a point of a
regular surface in R3. For this we studied the second fundamental form
measuring the behaviour of a normal to the surface in a neighbourhood
of the point. In this chapter we prove Theorema Egregium which tells
us that the Gaussian curvature is actually completely determined by
the first fundamental form.

Theorem 8.1 (Theorema Egregium). Let M be a regular surface
in R3. Then the Gaussian curvature K of M is determined by its first
fundamental form.

This remarkable result has an immediate consequence.

Corollary 8.2. [t is impossible to construct a distance preserving
planar chart of the unit sphere S2.

PROOF. If there exists a local parametrization X : U — S? of the
unit sphere which was an isometry then the Gaussian curvature of the
flat plane and the unit sphere would be the same. But we know that
S? has constant curvature K = 1. O

We shall now prove Theorem 8.1.

PROOF. Let M be asurface and X : U — M be a local parametriza-
tion of M with first fundamental form determined by

(? g) — [dX] - [dX].

The set {X,, X, } is a basis for the tangent space at each point X (u, v)
in X(U). Applying the Gram-Schmidt process on this basis we yield
an orthonormal basis {Z, W} for the tangent space as follows:

Xy

7=
VE
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oy X)X,
(X, Xu)
F
= Xv - _Xu
E
and finally
W E F
W=— = vE (X, — =X,).
[W|  VEG— F? E

This means that there exist functions a,b,c¢ : U — R only depending
on F, F, G such that

Z =aX, and W =0bX,+ cX,.
If we define a local Gauss map N : X(U) — S?% by
N =X, x X,

then {Z, W, N} is a positively oriented orthonormal basis for R? along
the open subset X (U) of M. This means that the derivatives

iy Zogy W, W,
satisfy the following system of equations
Zy = (24, 2)Z +(Z,,W)W +(Z,,N)N,
Zy = (2o, 2)Z 4 {Zy, W)W + (Zy, N)N,
Wy = Wy, Z)Z + Wy, W)W + (W, N)N,
W, = (W, Z2YZ + (W,, W)W + (W,, N)N.
Using the fact that {Z, W} is othonormal we can simplify to
Zy = (Zy,yWYW +(Z,, N)N,
Z, = (Zo,W)W + (Z,, N)N,
Wy = (Wi Z)Z+ (W, NN,
W, = (W,,Z2)Z + (W,, N)N.
The following shows that (Z,, W) is a function of E, F,G : U — R and
their first order derivatives.
(Zu, W) = ((aXy)u, W)
= (a, Xy + aXyu, bXy, + cX,)
= a,bE + aycF + ab{ Xy, Xu) + ac{ Xy, Xy)

1 1
= q,bE + a,cF + §abEu + ac(F, — §Ev)

and it is easy to see that the he same applies to (Z,, W).
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Utilizing Lemma 8.3 we now yield
(Zuy W) = {Zy, W)y
(Z,Wo)u = (Z, W)
= (Zu, Wo) +{Z, W) = (Zo, W) = (Z, Wu)
(Zu Wo) = (Zy, Wa)
= KVEG-F2
Hence the Gaussian curvature K of M is given by
(Zus Wy — (Z0, W)
VEG — F?
As an immediate consequence we see that K only depends on the func-

tions E, F,G and their first and second order derivatives and hence
completely determined by the first fundamental form of M. 0

Lemma 8.3. For the above situation we have
(Zu,Wy) = (Zu, Zy) = KNV EG — F2.
Proor. If A is the matrix for the shape operator in the basis
{X., Xy} then
—Ny, =a1 Xy, +anX, and — N, = a12X, + a2X,.
This implies that
(N, x Ny, N) = (K(X, x X,),N)
2
= L (X x X, N)
ef — ¢
= Ver—a N
ef — ¢
VEF — G?
= KVEG-F.
We also have
(N, x N,,N) =

This proves the statement. U
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Exercises

Exercise 8.1. The parametrized surface X : Rt x R — M is given
by
0

), rsin asin(——

S111 v

Xo(r,0) = (rsin a cos( ), T Ccos ).

Calculate its Gaussian curvature K.

Exercise 8.2. Equip R? and R* with their standard Euclidean
scalar products. Prove that the parametrization X : R? — R*,

X (u,v) = (cosu,sinu, cos v, sinv)

of the compact torus M in R* is isometric. What does this tell us about
the Gaussian curvature of M. Compare the result with Theorem 7.13.

Exercise 8.3. Let M be a regular surface in R* and X : U — M
be an orthogonal parametrization i.e. F' = 0. Prove that the Gaussian
curvature satisfies

1 E G
K=— ( )y + (——= u)
2V EG <\/ EG) ( )

Exercise 8.4. Let M be a regular surface in R® and X : U — M
be an isothermal parametrization i.e. ' =0 and E = G. Prove that
the Gaussian curvature satisfies

1
K=——((logFE log &
ZE(( 08 ) + (log E)yy),

Determine the Gaussian curvature K in the cases when

4 4
r=— —/— | F[F=_ —# E=—.
(14 u® +02)? (1 —u?—v2)2 or u2




CHAPTER 9

Geodesics

In this chapter we introduce the notion of a geodesic on a surface
in R3. We show that locally they are the shortest paths between two
given points. Geodesics generalize the straight lines in Euclidean plane.

Let M be a regular surface in R® and v : I — M be a curve on M
such that v(0) = p. As we have seen earlier the second derivative %(0)
at p has a natural decomposition

§(0) = 5(0)" +5(0)

into its tangential part, contained in 7, M, and its normal part in the
orthogonal complement 7),M*.

Definition 9.1. Let M be an oriented regular surface in R3. A
curve v : I — M on M is said to be a geodesic if the tangential part
of the second derivative %(t) satisfies

() =0
forallt e I.

Example 9.2. Let p € S? be a point on the unit sphere and
Z € T,5? be a unit tangent vector at p. Then (p, Z) = 0 so {p, Z}
an orthonormal basis for a plane in R? (through the origin) which in-
tersects the sphere in a great circle. This circle is parametrized by the
curve v : R — S?

v(s) =coss-p+sins- Z.
Then the second derivative 5(s) satisfies 4(s) = —7(s) for all s € I.

This means that the tangential part 5**"(s) vanishes so the curve is a

geodesic on S2.

Proposition 9.3. Let M be a reqular surface in R3 and v : I — M
be a geodesic on M. Then the norm |y| : I — R is constant i.e. the
curve 18 parametrized proportional to arclength.

51
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PRrRoOOF. The statement is an immediate consequence of the follow-
ing calculation

SRR = S 60,50

U

Definition 9.4. Let M be an oriented regular surface in R? with
Gaussmap N : M — S? and v : I — M be a curve on M parametrized
by arclength. Then we define the geodesic curvature k, : I — R of
v on M by

k(1) = (N (y(1)) < 4(t),5(1))-

It should be noted that {#(¢), N(v(t)) x 4(t)} is an orthonormal
basis for the tangent plane T’y M of M and y(t). The curvey : I — M
is parametrized by arclength so the second derivative is perpendicular
to 7. This means that the

kg () = [(6)™"?
The geodesic curvature is therefore a measure of how far the curve is
from being a geodesic.

Corollary 9.5. Let M be an oriented reqular surface in R® with
Gauss map N : M — S? and v : I — M be a curve on M parametrized
by arclength. Let k : I — R be the curvature of v as a curve in R3
and ky, kg : I — R be the normal and geodesic curvatures, respectively.
Then

k(t)? = ky(t)* + kn(t)*

Proor. This is a direct consequence of the orthogonal decomposi-
tion
H(0) = H(0)™* +5(0)"™.
0

Example 9.6. Let v = (r,0,2) : I — R3 be a differentiable curve
in the (z, 2)-plane such that r(s) > 0 and 7(s)*+2(s)? = 1 for all s € I.
Then X : I x R? — R3 with

cosv —sinv 0\ [r(u) r(u) cosv
X(u,v) = | sinv cosv 0 0 | =|r(u)sinv
0 0 1 z(u) z(u)
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parametrizes a surface of revolution M. The tangent space is generated
by the vectors

7(u) cosv —r(u)sinv
X, = | 7(u)sinv |, X, =| r(u)cosv
Z(u) 0
For a fixed u € R the curve v, : I — M with
r(u) cosv
y(v) = [ r(u)sinv

z(u)
parametrizes a meridian on M by arclength. It is easily seen that
<;§/1>XU> = <;)./1>XU> =0
S0 71 is a geodesic.
For a fixed v € R the curve v, : [ — M with

r(u) cosv
Ya(u) = | r(u)sinv
z(u)
parametrizes a parallel on M A simple calculation yields
(o, Xy) = —r(u)r(u) and (Fa, X,) = 0.

This means that v, is a geodesic if and only if 7(u) = 0.

Theorem 9.7. Let M be a reqular surface in R3 and X : U — M
be a local parametrization of M with

E F
(F G> = [dX] - [dX]".
If (u,v) : T — U is a C*-curve in U then the composition

y=Xo(u,v):I— X(U)
1s a geodesic on M if and only if

d 1
—(Bu+ Fbv) = —(Ea% 4 2F,00 + G0

dt 2
1
%(Fu +Gb) = (B 2Fub 4 Gui).

PROOF. The tangent vector of the curve (u,v) : I — U is given by
(1, ) = 1ey + Ve so for the tangent 4 of 4 we have
¥ = dX - (ue; + vey)
= udX -e1 +0dX - ey
= uX, +0X,.
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Following the definition we see that v : I — X(U) is a geodesic if and
only if
(7, Xy) =0 and (¥3,X,)=0

The first equation gives

d
0 = <£(uXu+1‘)XU),Xu>
d('X + 00Xy, Xu) — (0X, +0X dX)
= 7 \UAY T UAy, Ay) — (UAy T VAy, —— Ay
dt dt
which is equivalent to
d
a(EujLF?'J)

— (X + 0 Xy, 1 X+ 0 X0
= U2 <Xua qu> + uv(<Xua Xuv> + <Xva qu>) + ®2<Xva Xuv>

1 1
= —E, 0%+ F,a0 + §Gu@2.

2
This gives us the first geodesic equation. The second one is obtained
in the same way. 0

Theorem 9.7 characterizes geodesics as solutions to a second order
non-linear system of ordinary differential equations. For this we have
the following existence result.

Theorem 9.8. Let M be a regular surface in R®, p € M and
Z € T,M then there exists a unique, locally defined, geodesic
v:(—€€) = M
satisfying the initial conditions v(0) = p and ¥(0) = Z.

PRrOOF. The proof is based on a second order consequence of the
well-known theorem of Picard-Lindelof formulated here as Fact 9.9. [

Fact 9.9. Let f : U — R" be a continuous map defined on an open
subset U of R x R™ and L € R such that

for all (t,x),(t,y) € U. If (to,x0) € U and x; € R" then there exists a
unique local solution x : I — R™ to the following initial value problem

2'(t) = f(t,z(t)), x(to) =z, '(to) = 1.

Proposition 9.10. Let M, and My be two reqular surfaces in R3
and ¢ : My — My be an isometric differentiable map. Then v, : I —
M is a geodesic on My if and only if the composition v = ¢po~yy : [ —
My 1s a geodesic on M,
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PROOF. See Exercise 9.6 O

Theorem 9.11 (Clairaut). Let M be a reqular surface of revolution
and v : I — M be a geodesic on M parametrized by arclength. Let
r: I — R" be the function describing the distance between a point y(s)
and the azes of rotation and 0 : I — R be the angle between *(s) and
the meridian throught v(s). Then the product r(s)sinf(s) is constant
along the geodesic.

PROOF. Let the surface M be parametrized by X : I x R? — R?
with

cosv —sinv 0\ [r(u) r(u) cosv
X(u,v) = | sinv cosv 0 0 | =1{r(u)sinv |,
0 0 1 z(u) z(w)

where (r,0,z) : I — R? is a differentiable curve in the (z, z)-plane such
that r(s) > 0 and 7(s)* + 2(s)> =1 for all s € I. Then

7(u) cosv —r(u)sinv
X, = | 7(w)sinv |, X,=| r(u)cosv
Z(u) 0
give
E F 1 0
(5 &) =xixr= (5 o)
so the set )
{XU7 mxv}

is an orthonormal basis for the tangent space of M at X (u,v). This
means that the tangent (s) of the geodesic v : I — M can be written
as
1
A(s) = cos 0(s) X, (s) + sin H(S)ﬂXv(s),

r(s
where r(s) is the distance to the axes of revolution and 6(s) the angle
between 4(s) and the tangent X, (s) to the meridian. It follows that

in 6
Xy x7y = Xux(cosﬁXu—l—Sm X,)
r
_ Sme(Xuva)
r

but also
Xy xd = X, x(UX, +0X,)
= (X, x Xyp).
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Hence
r(5)?0(s) = r(s)sin O(s).
It now follows from the second geodesic equation that
d d
g(r(s) sinf(s)) = —(r(s)*v(s)) = 0.
O

Definition 9.12. Let M be a regular surface in R3 and v : I — M
be a C?-curve on M. A variation of «y is a C*-map
O:(—ce)x I —M
such that for all s € I, ®y(s) = ®(0,s) = 7(s). If the interval is
compact i.e. of the form I = [a,b], then the variation ® is said to be
proper if for all t € (—¢,¢), P4(a) = y(a) and D¢(b) = v(b).
Definition 9.13. Let M be a regular surface in R3 and v : [ — M

be a C%-curve on M. For every compact subinterval [a, b] of I we define
the length functional L, by

ab] / |’7 |dt

A C%curve v : I — M is said to be a critical point for the length
functional if every proper variation ® of |, satisfies

d
dt(L[a 5 (P:))]e=0 = 0.

We shall now prove that geodesics can be characterized as the crit-
ical points of the length functional.

Theorem 9.14. Let v : I = [a,b] — M be a C?-curve parametrized
by arclength. Then 7y is a critical point for the length functional if and
only if it is a geodesic.

PROOF. Let @ : (—¢,¢) x I — M with ® : (¢,s) — ®(t,s) be a
proper variation of v : I — M. Then

d

G Lan(@))liso

= dt/ht |d$ ’tO
9D 0D
- [ G G

b 0P 0D o 0P
- / <<(‘9t(‘93’g>/ (55 Bs >>d5|t 0
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R L
- [ g g ek

| (G T - G sl
b 2
— (0.0 S0~ (G095 5 0.5)ds

The variation is proper, so

0P 0P
Furthermore )
0“d ..
@(07 s) = 4(s),
SO
d 0P

b
G Tan@)loo == [ (G085

The last integral vanishes for every proper variation ® of v if and only
if v is a geodesic. 0

Let M be a regular surface in R?, p € M and
TyM ={e e T,M| |e|] =1}

be the unit circle in the tangent plane 7,/ . Then every non-zero
tangent vector Z € T),M can be written as

Z =ryz-eg,
where 7z = |Z| and ez = Z/|Z| € TyM. For e € T) M let
Ye : (—ae,be) — M
be the maximal geodesic such that a,b. € RT U {0}, 7.(0) = p and
4(0) = e. It can be shown that the real number
e = inf{—a.,b.| e € T)M}.
is positive so the open ball

B (0) ={Z € T,M| |Z] < ¢}

is non-empty. The exponential map exp, : BEP(O) — M at p is
defined by
_ p itZ=0
exXpy 4 { Yey (rz) it Z#0.
Note that for e € T)M the line segment X, : (—€p,6,) — T,M
with A\, : t — t - e is mapped onto the geodesic v, i.e. locally we have
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Ye = €xp,oA.. One can prove that the map exp, is smooth and it
follows from its definition that the differential

d(exp,)o : TyM — T,M
is the identity map for the tangent space 7,M. Then the inverse
mapping theorem tells us that there exists an r, € R* such that if
Uy, = B2 (0) and V,, = exp, (U,) then

exp,, |, : Up =V,

is a diffeomorphism parametrizing the open subset V), of M.

Example 9.15. Let S? be the unit sphere in R* and p = (1,0,0)
be the north pole. Then the unit circle in the tangent plane 7,5 is
given by

T,5% = {(0,cos6,cos6)| 6 € R}.
The exponential map exp,, : 7,5* — S? of S* at p is defined by
exp,, : (0, cos 6, cosf)) — cos s(1,0,0) + sin 5(0, cos 0, cos 9).

This is clearly injective on the open ball

B.(0)={Z € T,5%| |Z| < 7}
and the geodesic

v s+ exp,(s(0, cos ), cos))
is the shortest path between p and v(r) as long as r < 7.

Theorem 9.16. Let M be a reqular surface in R®. Then the
geodesics are locally the shortest between their end points.

PROOF. Let p € M, U = B}(0) in T,M and V = exp,(U) be such
that the restriction
p=exp,|ly:U—V
of the exponential map at p is a diffeomorphism. We define a metric
ds? on U such that for vector fields Z, W on U we have

ds*(X,Y) = (d¢(X), dp(Y)).

This turns ¢ : U — V into an isometry. It then follows from the
construction of the exponential map, that the geodesics in U through
the point 0 = ¢~1(p) are exactly the lines

Azlth'Z
where Z € T,M.

Now let ¢ € B2(0) \ {0} and A, : [0,1] — BZ?(0) be the curve
Ag it +— t-q. Further let ¢ : [0,1] — U be any curve in U such that



9. GEODESICS 59

0(0) =0 and o(1) = ¢q. Along o we define two vector fields ¢ and &,aq
by 6 : t+— o(t) and

ds*(o(t),5(t))

20,000

d—rad A

Then it is easily checked that

. |ds*(o(t),6(t))]
‘Jrad(t” = -
|o(2)]
e 2(6(1).5(1)
d d ds*(o(t),o(t
—|6(t)| = —+/ds?(5(t), 6(t)) = ——2—
G001 = 4 VaTE0.5(0) = <0
Combining these two relations we yield
d
Trad (D) = — |0 (t
raalt)] > 16(1)
This means that
1
L(o) = lor(t)]dt
0
1
2 |Graa (t)|dt
0
1
d
> —lo(t)|dt
|
o(1)] = 16(0)]
= gl
= L(\).

This proves that in fact v is the shortest path connecting p and ¢q. [

~ Example 9.17. Let M be a surface of revolution parametrized by
X:IxR— M,

) cosv —sinv 0\ [7(s) r(s) cosv
X(s,v) = [sinv cosv 0 0 | =|r(s)sinv |,
0 0 1 2(s) z(s)

where (r,0,z) : I — R? is a differentiable curve in the (z, z)-plane such
that r(s) > 0 and 7(s)? + 2(s)? = 1 for all s € I. In chapter 7 we have
seen that the Gaussian curvature K of M satisfies the equation

P(s) + K(s)r(s) = 0.

If we put K = —1 and solve this linear ordinary differential equation
for r we get the general solution r(s) = ae®+be*. By a suitable choice
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of a and b we yield a surface of revolution with constant curvature
K=-1.
If we pick r,z : Rt — R with

r(s) =€ and z(s) = /OS V1 — e 2dt

we get a parametrization X : R~ x R — M of the famous pseudo-
sphere. The corresponding first fundamental form is

(5 8) = wsr= () %)

For convenience we introduce a new variable u satisfying
s(u) = —logu.

This gives us a new parametrization X : [ X R — M of the pseudo-
sphere, where I = {u € R| u > 1} and X (u,v) = X (s(u),v). Then the
chain rule gives

1
X, = s.X, = —=X,
S

and we yield the following first fundamental form for X

(£ £) o= 4.3 2)

It is clear that this first fundamental form actually gives us a metric
1
ds® = E(dzﬂ + du?)
in the upper half plane
H? = {(v,u) € R?*| u > 0}.

This is called the hyperbolic metric. The hyperbolic space (H?, ds?)
is very interesting both for its rich geometry but also for its historic
importance. It is a model for the non-Euclidean geometry.

We shall now determine the geodesics in the hyperbolic plane. Let
v = (v,u) : I — H? be a geodesic parametrized by arclength. Then
4 = (0,4) and

o L. .
ds*(1,4) = (0" +40%) =1

or equivalently ©? + 1% = u%. Following the proof of Clairaut’s theorem

we know that .
r(s)sinf(s) = v =R
u

2

is a real constant along the geodesic. This implies that v = u?R.
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If R = 0 we see that ¥ = 0 so the function v is constant. This
means that the geodesic is a vertical line in the upper half plane H2.
If R # 0 then we have
u'R? + u* = u?
or equivalently
i =+Vv1— R*u?
This gives us the equation
Ru

dv = +——du
V1 — R2y2

which can be integrated to
R(v —vg) = £V1 — R2u?
which implies
(v—p)* +u? = %
This means that the geodesic is a half circle in H? with centre at (vg,0)
and radius 1/R.
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Exercises

Exercise 9.1. Describe the geodesics on the circular cylinder
M = {(z,y,2) € R*| 2* +9* = 1}.

Exercise 9.2. Find four different geodesics passing through the
point p = (1,0,0) on the one-sheeted hyperboloid

M= {(z,y,2) € B a? 442~ 2 =1},

Exercise 9.3. Find four different geodesics passing through the
point p = (0,0,0) on the surface

M = {(z,y,2) € R’| ay(a® — y*) = z}.
Exercise 9.4. Let X : R? — R? be the parametrized surface in R?
given by
X(u,v) = (ucosv,usinv,v).
Determine for which values of a € R the curve 7, : R — M with
Yalt) = X(t,at) = (tcos(at), tsin(at), at)

is a geodesic on M

Exercise 9.5. Let v : R — R3 be a regular curve, parametrized by
arclength, with non-vanishing curvature and n, b denote the principal
normal and the binormal of 7, repectively. Let r € R™ such that the
r-tube M around v given by X : R? — R? with

X(s,0) — v(s) +r(cosf-n(s)+sinf - b(s))

is a regular surface. Show that the circles v4(0) : R — R3 are geodesics
on the surface.

Exercise 9.6. Find a proof of Proposition 9.10.

Exercise 9.7. Let M be the regular surface in R3 parametrized by
X :Rx(-1,1) - R? with

X(u,v) = 2(cosu,sinu,0)
+wvsin(u/2)(0,0,1) 4+ v cos(u/2)(cos u, sinu, 0).
Determine whether the curve v : R — M defined by
vt X(t,0)

is a geodesic or not. Is the surface M orientable 7
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Exercise 9.8. Let M be the regular surface in R? given by
M = {(z,y,2) € R*| 2* +¢y* — 2* = 1}.

Show that v = (—1,3, —v/2) is a tangent vector to M at p = (v/2,0,1).
Let v = (71,72,73) : R — M be the geodesic which is uniquely deter-
mined by v(0) = p and 4(0) = v. Determine the value

e eo)

Exercise 9.9. Let M be a regular surface in R? such that every
geodesic v : I — M is contained in a plane. Show that M is either
contained in a plane or in a sphere.

Exercise 9.10. The regular surface ¥ in R3 is parametrized by
X : R? — R3 with
X : (u,v) = (cosv(2 4 cosu),sinv(2 + cosu), sinu).
Let v = (x,y,2) : R — X be the geodesic on ¥ satisfying
1

oy — (0. - L
~v(0) = (3,0,0) and 7(0)—(0,\/5,\/5).

Determine the value
inf (z%(s) + y*(s)).

seR






CHAPTER 10

The Gauss-Bonnet Theorem

In this chapter we prove three versions of the Gauss-Bonnet theo-
rem.

Theorem 10.1. Let M be an oriented regqular surface in R® with
Gauss map N : M — S?. Let X : U — M be a local parametrization of
M such that X(U) is simply connected. Let v : R — M parametrize a
reqular, simple, closed and positively oriented curve on M by arclength.
Let Int(7y) be the interior of v and k, : R — R be its geodesic curvature.
If L € RY is the period of v then

L
/ ky(s)ds = 2m — KdA,
0

Int(7)

where K is the Gaussian curvature of M

PROOF. Let {Z, W} be the orthonormal basis which we obtain by
applying the Gram-Schmidt process on the basis {X,, X, }. Along the
curve 7 : R — X(U) we define an angle # : R — R such that the unit
tangent vector 7y satisfies

A(s) = cosB(s)Z(s) + sinf(s)W(s).
Then

N x4 = N x (cos0Z + sinfW)
= —sinfZ + cos OW.

and for the second derivative 4 we have
5 = 0(—sinfZ + cos0Z) + cos 0Z + sin W
so the geodesic curvature satisfies
kg = (N x4,%)
= O(—sinbZ + cos0Z,—sin0Z + cos OW)
+(—sinfZ + cos0Z,cos 07 + sin W)
= 0—(Z,W).

65
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If we integrate the geodesic curvature k, : R — R over one period

we get
/OLk’g(s)ds _ / (s ds—/( (5), T (s))ds

= o1 —00) ~ [ (2(5), Wis)as

_ 27T—/0 (Z(s), W/ (s))ds.

Let « = X 'ov: R — U be the inverse image of the curve v in the
simply connected parameter region U. The curve « is simple, closed
and positively oriented. Utilizing Lemma 8.3 and Green’s theorem we
now yield

/0 (Z(s),W(s))ds =

L
(Z,0W, + 2W,)ds

(2. W)du+ (2, W,)dv
—(Z,W,),)dudv

((Zus W) +(Z, W)

Il
\,H\\c\

—(Zy,Wy) = (Z, W) dudv

- / (Zas W) — (Zo, W) dudu
Int(7)

= KVEG — F2dudv
Int(7)

= KdA.

Int(7)

This proves the statement. U

Corollary 10.2. Let v : R — R? parametrize a regular, simple,
closed and positively oriented curve by arclength. If L € RT is the
period of v then

L
/ ky(s)ds = 2,
0
where k; : R — R is the geodesic curvature of .

The next result generalizes Theorem 10.1
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Theorem 10.3. Let M be an oriented reqular surface in R® with
Gauss map N : M — S?. Let X : U — M be a local parametrization
of M such that X(U) is simply connected. Let v : R — M parametrize
a piecewise reqular simple, closed, positively oriented curve on M by
arclength. Let Int(7y) be the interior of v and k, : R — R be its geodesic
curvature on each regular piece. If L € R™ is the period of v then

L n
/ ky(s)ds = Zai —(n—=2)r — KdA,
0 i=1 Int(v)

where K is the Gaussian curvature of M and {aq,...,an} the inner
angles at the corner points.

PROOF. Let {Z, W} the orthonormal basis which we obtain by ap-
plying the Gram-Schmidt process on the basis { X,, X, }. Let D be the
discrete subset of R corresponding to the corner points of v(R). Along
the the regular arcs of v : R — X (U) we define an angle § : R\ D — R
such that the unit tangent vector 7 satisfies

A(s) = cosB(s)Z(s) + sinb(s)W(s).

We have seen earlier that in this case the geodesic curvature is given
by k, = 6 — (Z,W) and integration over one period gives

/OL ky(s)ds = /OL 0(s)ds — /OL<Z(8),W(S)>ds,

As a consequence of Green’s theorem we have

/0 “2) W snds = [ KdA.

Int(7)

The integral over the derivative 6 splits up into integrals over each

regular arc
L n Si
/é(s)ds:Z/ 0(s)ds
0 =1V si-1

which measures the change of angle with respect to the orthonormal
basis {Z, W} along each arc. At each corner point the tangent jumps
by the angle (7 — «;) where «; is the corresponding inner angle. When
moving around the curve once the changes along the arcs and the jumps
at the corner points add up to 27. Hence

27?2/0 é(s)ds—i-Z(w—a,-).

This proves the statement U
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Theorem 10.4. Let M be an orientable and compact reqular sur-
face in R3. If K is the Gaussian curvature of M then

/ KdA = 2mx (M),
M
where x (M) is the Euler characteristic of the surface.

PrOOF. Let 7 = {T},...,T,,} be a triangulation of the surface
M such that each triangle T} is geodesic and contained in the image
Xi(Uy) of a local parametrization X; : U; — M. Then the integral of
the Gaussian curvature K over M splits

KdA = KdA
/]‘W ; Ty,

into the sum of integrals over each triangle T}, € 7. Following Theorem

10.3 we now have
/ KdA =) o+ (2 —ny)w
T i=1
for each triangle T}. By adding these relations we obtain

/MKCZA = ZZ(O&M—F(Q—H)TF)

k=1 =1

= ZZaki—QﬂE—l—QﬂF
k=1 i=1
= (V- E+F).

This proves the statement. 0
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Exercises

Exercise 10.1. Let M be a regular surfaces in R® homeomorphic
to the torus. Show that there exists a point p € M where the Gaussian
curvature vanishes i.e. K(p) =0.

Exercise 10.2. The regular surface M in R? is given by
M= {(z,y,2) eR} 2> +¢y*—2*=1 and —1<2z<1}.

Determine the value of the integral

[
M

where K is the Gaussian curvature of M.

Exercise 10.3. For r € R let the surface X, be given by

Y, = {(z,y,2) € R? 2z =cos /22 + 92, 2> +y* <71 z,y >0}
Determine the value of the integral

KdA,

3
where K is the Gausssian curvature of .

Exercise 10.4. Let M be a regular surface in R? of negative Gauss-
ian curvature K and p,q € M be two distinct point in M. Further let
Y1, V2 be two distinct geodesics from p to ¢. Show that M is not simply
connected.

Exercise 10.5. For n > 1 let M, be the regular surface in R? given
by
M, ={(v,y,2) e R}| 2® + y* = (1 + 2*")%, 0 < 2 < 1}.
Determine the value of the integral

/ KdA,
M’IL

where K is the Gaussian curvature of M,,.



