
Mixminion:

Design of a Type III

Anonymous Remailer Protocol

Roger Dingledine

The Free Haven Project

1

Threat Model (what we aim

to defend against)

• Global passive adversary – can observe everything

• Owns half the nodes

We are not real-time, packet-based, or steganographic

2

Direct Forwarder

1A B
M, to B M

But: an observer of Alice can just read M and know

it’s going to Bob

3

Add Encryption

1A B
E(M, to B) M

But: 1 still knows Alice sent M to Bob

4

Multiple Hops

1A B
M

2
E ...(E (M,to B), to 2)21 2E ...(M,to B)

Assume: Not all hops will collude and reveal A

But: How do you know what the servers are?

5

Statistics servers

(directory servers)

Mixmaster Latent-Hist Latent Uptime-Hist Uptime Options

--

winter 111032010010 :42 ++++++++++++ 100.0% PR O

xganon 000000000000 :03 ++++++++++++ 100.0% PR

green 00000000000? :09 +++++++++++0 97.8% 2 O

lcs 151231221221 1:30 +++++++++7++ 97.8% M

• Have several servers to avoid single point of failure

• They can send test messages and tell users which nodes are
up

6

Direct Reply

(Trying to hide A’s location)

1B A
M,"alice" M

“alice”=an4691@anon.penet.fi (A has told 1 her location.)

This and the direct forward gets you type 0 remailers (anon.penet.fi)

But: observers still know it goes to A.

And 1 knows where A lives.

7

Reply Blocks

1B A
E(E(...(M)))

2
M,"alice" E(M),D("alice")

...

• “alice” = 1, E1(2, ...En(A))

• Hard for B to get a reply block from A.

8

Nymserver

NSB A
E(E(...(M)))M,alice@nym.alias.net M, "alice"

...

NS knows A’s reply block but not her location.
9

Anonymized Reply

NSB A
E(E(...(M)))E(E(...(M), to "NS")) M, "alice"

......

• NS doesn’t know A or B

• If you stop here you get type 1 (cypherpunk) remailers.

10

Batching and Mixing

Encryption doesn’t matter if there’s only one message.

1A B
E(...M,B) M

...

...
...

...

...
...

But: Different-sized messages can still be distinguished.

11

Fixed length messages by re-padding

3

1
M

M
...

2 3
...3

• Add random junk to the bottom to replace the header you

strip off

• Everything’s encrypted, so it looks ok.

But: Replay attacks – a given message always decrypts the same

way!

12

Replay cache

• When a message comes in, hash it and add it to

the replay cache.

• If it’s already in the cache, drop it.

But: you have to remember all the hashes forever!

13

Expiration dates

• Exp date is chosen randomly between 3 days ago

and 3 days from now.

• Each node checks exp date; if more than 7 days

old, drop.

• Now adversary can’t tell when the message was

sent from its exp date; and servers can forget

hashes that are > 7 days old.

14

Flooding attack

But you can flood a node so you know all but one message in

the batch.

1A B
E(...M,B) M

15

Pooling

• Not all messages come out at each flush. Keep a

minimum number in the pool, always.

• Now it’s harder to target an individual message.

16

• But: Trickle attack – what if you’re the only one

who sends a message into the node in a given

interval?

• More broadly, what if you’re the only one who

sends a message into the whole network, in that

interval?

17

Dummy messages

• Users sometimes send decoy messages even if they

have nothing to send.

• Hopefully there will be enough messages that the

adversary will be confused.

• Dummies go several hops and stop (hard to decide

convincing destinations).

• If you stop here, you get type 2 (Mixmaster)

remailers.

18

Passive subpoena attack

• Eve can record messages for later subpoena

She can also recognize her own messages, which

helps with flooding attacks

• Fix: Link encryption with ephemeral keys

(rekeyed every message / few minutes)

19

Active subpoena attack

• Mallory can still record messages from the node

she runs, and arrive later with a subpoena.

• Fix: Periodic key rotation

20

Partition attack on client
knowledge (1)

• Adversary can distinguish between clients that use

static node lists and clients that frequently update

from the directory servers.

• Fix: Clients must all use the same algorithm for

updating from the directory servers. Directory servers

must be part of the spec!
21

Partition attack on client

knowledge (2)

• Directory servers can be out of sync; evil directory

servers can give out rigged subsets to trace clients.

• Fix: DSs must successively sign directory bundles;

a threshold of servers is assumed good.

22

Partition attack on message

expiration date

• Delaying a message a few days will push its exp

date to one end of the valid window – so they

won’t be uniformly distributed.

• Fix: No expiration dates. Keep all hashes until key

rotates.

23

Tagging attack on headers

• Mixmaster headers have a hash to integrity-check

the fields for that hop. But it doesn’t check the

rest of the header.

• So we can flip some bits later in the header, and if

we own the node later in the path that corresponds

to the header we just broke, we can recognize the

message.

• We must make the hash cover the entire header.

24

Tagging attack on payload

• Flip some bits in the payload, and try to recognize

altered messages when they’re delivered.

• Fix: Make the hash cover the payload too.

25

We’re still using Cypherpunk

replies

• No replay detection, no batching, messages change

length at each hop, etc.

• Fix: Do all this stuff for replies too.

Since we want to encrypt replies at each hop, use a

cryptosystem where decrypt is as strong as encrypt.
26

But you can’t write a reply block without

knowing the payload!

• Since the author of the reply block can’t guess the

right hashes for the payload, we’ve reintroduced

the payload tagging attack.

• Actually, that’s ok. Since we’re encrypting at each

hop, only the recipient can recognize the tag.

27

But forward messages and replies must now

be distinguishable

• Forward messages need hashes, and replies can’t

have them.

• Assuming replies are rare relative to forwards, replies

are easy to track.

28

We support three delivery types

• Forward messages, only Alice remains anonymous

• Direct replies, only Bob remains anonymous

• Anonymized reply messages where Alice and Bob

remain anonymous

Parties that get anonymity must run our software.

29

Messages have two headers and a payload

Divide the path into two legs, one for each header

• For forward messages, Alice chooses both legs

• For direct replies, Alice can use the reply block

directly

• For anonymized replies, Alice chooses the first leg

and uses Bob’s reply block for the second.

30

Legs are connected by the Crossover Point

• One of the hops in the first header is marked as a

crossover point

• At the crossover point, we decrypt the second header

with a hash of the payload, and then swap the

headers.

31

Forward messages are anonymous:

• If the second header or the payload are tagged in

the first leg, then the second header is unrecover-

able.

• If tagged in the second leg, we’ve already gotten

anonymity from the first.

32

Replies are anonymous:

• The adversary can never recognize his tag.

33

Multiple-message tagging attacks

• If Alice sends multiple messages along the same

path, Mallory can tag some, recognize the pattern

at the crossover point, and follow the rest.

• Only works if Mallory owns the crossover point.

• Fix: Alice picks k crossover points

(and hopes Mallory doesn’t own most of them)
34

Nymservers and single-use reply blocks

• Work like imap servers

• User anonymously sends a bunch of reply blocks to

receive the mail that’s waiting for him.

35

If you stop here, you get the current

Mixminion remailer design.

36

Open problem: reputation on the directory

servers

How do we let clients learn which nodes are good,

without:

Letting the adversary do partitioning attacks on clients

Letting the adversary get more traffic by behaving well

37

Open problem: trickle attack on directory

servers

• Malicious nodes can hold a message and release it

later, when circumstances are different.

• More broadly, we’re still in an arms race against

flooding and trickle attacks

38

Open problem: long-term intersection

attack

• The fact that not all users are sending messages

all the time leaks information.

• By observing these patterns over time, we can learn

more and more confidently who is sending mail, to

whom, when, etc.

• Major unsolved problem in anonymity systems.

39

Privacy Enhancing Technologies workshop

March 26-28, 2003

Dresden, Germany

http://petworkshop.org/

40

Play with our code

http://mixminion.net/

41

