
Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

1 di 6 08/03/2008 22.25

Run commands sequentially across a cluster from a
UNIX server, Part 1: Secure Shell (SSH)
Installing and configuring ssh

Level: Introductory

Harish Chauhan (hchauhan@in.ibm.com), Linux Architect, IBM　

15 Aug 2006
Updated 21 Sep 2006

Configure Secure Shell (SSH) on IBM System p™ and System x™ computers so the UNIX® server
can access a remote server without a password.

Note: This article is strictly for beginning UNIX users and administrators. Experts will likely already know several
ways of accomplishing this task.

Introduction: Executing a remote command on multiple computers

When you hear someone referring to a shell, do you know what that really entails? It basically means that you can
open a terminal session on any UNIX® machine, where you type your commands to perform an activity, such as
useradd username, passwd username, system-config-printers, and so on. This shell is local to
your machine, and whatever command you execute is performing activity on your local machine.

However, what if you want to execute a command on a set of machines, such as setting the date on all of the
machines in the network. One way is to log in individually to each machine and execute the date command, one
machine at a time. A better way would be to set it automatically, where you log in to a server and have that
machine set the date on the rest of the machines serially. To set the date remotely, you need tools like Secure Shell
(SSH), or remote shell (rsh), installed on your machines. Usually, when you try to access the remote machines, you
will be prompted for a password to make sure that you are an authorized user. However, you can configure SSH
and rsh in your environment to bypass password verification. In this article, you'll concentrate on how to configure
SSH in your environment. In Part 2, you'll look at rsh.

Hardware, software, and setup

Use the following hardware and software, to perform the tasks described in this article:

IBM System p™ and System x™ servers, such as System p520 or System x345
Red Hat Enterprise Linux® Version 4.0 Update 3 (RHEL Version 4.0 Update 3)

Figure 1. Setup diagram

Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

2 di 6 08/03/2008 22.25

Now follow these steps:

Install RHEL Version 4.0 Update 3 on all machines in the environment, such as node1.my.com,
node2.my.com, and node3.my.com, as shown in Figure 1. Note that any of the nodes can be System p, or
System x, servers.

1.

Make sure openssh Red Hat Package Manager (RPM) is installed on all your machines, as shown in
Figure 2.

Figure 2. openssh RPMs

2.

If you already have openssh installed, you will find the /etc/ssh directory on your machine, as shown
in Figure 3. This directory holds all SSH-related configuration files. You can customize sshd by modifying
the files here, but I'm not going to cover this in detail in this article.

Figure 3. Installed path, that is /etc/ssh

3.

If you don't have openssh installed, then install it from the RHEL Version 4.0 Update 3 CDs using the
following commands: #rpm -ivh openssh-* or #system-config-packages.

4.

Configuring for root and standard users

You have the following two different types of configurations to consider:

Root user
Standard user, in this case myuser

Let's first consider configuring SSH for the Rootuser. To configure the Rootuser, follow these steps:

Generate the public and private key pairs. In order to generate the key pairs, you have to execute the
ssh-keygen command, as shown in Figure 4. Note: ssh-keygen prompts you to set a passphrase, but
you just continue by pressing the Enter key. As shown in Figure 5, the .ssh folder gets created in the
/root folder, which holds the generated public (id_rsa.pub) and private (id_rsa) keys.

Figure 4. ssh-keygen

1.

Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

3 di 6 08/03/2008 22.25

Figure 5. Generated private and public keys pair

Repeat the above step for every machine participating in your environment; public and private keys are
different for each machine. Note: The generated public and private keys don't match even if you execute the
ssh-keygen multiple times on the same machine.

2.

Once you have executed ssh-keygen on all the nodes, you can collect the generated id_rsa.pub key
from each machine. You can use any method for collecting the id_rsa.pub keys, including a floppy
drive, USB device, FTP, and so forth.

3.

In this step, I have assumed you have copied all the public keys in the /root/.ssh folder on
node1.my.com, as shown in Figure 6, where id_rsa.pub_node2 is the public key of node2.my.com
and id_rsa.pub_node3 is the public key of node3.my.com. Basically, you append the contents of all
three files in one file using the cat command.

Figure 6. Collected id_rsa.pub keys

4.

Now concatenate the contents of all the collected public keys in a file known as authorized_keys, as
shown in Figure 7 below, and place the file in the /root/.ssh folder. Note: The file must be named as
authorized_keys. Any other name will not work.

Figure 7. Create authorized_keys file

Note: authorized_keys2 works as well, and only for SSH protocol Version 2.

5.

The final contents of the authorized_keysfile will look like the code shown in Figure 8. Note: Each
stanza shown in Figure 8 corresponds to one machine in your environment.

Figure 8. Contents of authorized_keys file

6.

Finally, you are ready to copy the authorized_keys file into the /root/.ssh folder on each machine
where you would like to log in without receiving a password prompt. You can use any standard method to
copy the file to each machine, including a floppy drive, USB device, FTP, and so on.

7.

Once the authorized_keys file has been copied to all the machines, you can test your setup by
executing the following command:
ssh node2.my.com date

8.

Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

4 di 6 08/03/2008 22.25

If everything has been done correctly, you should see the date output from node2.my.com without being
prompted for a password.

Figure 9. Sample script

Next, you should consider configuring SSH for any standard user, in this case, myuser.

To do this, make the assumption that user name, myuser, exists on all the nodes. You want to make sure myuser
is able to execute the command without any password prompt. For example:

Log in to any computer in the system as myuser.
Execute the #ssh-keygen -t rsa command, which generates the public and private keys for myuser
user in the /home/myuser/.ssh folder, as shown in Figure 10.

Figure 10. User public and private keys

Execute ssh-keygen on all the nodes as the myuser user.
Collect all the public keys and create the authorized_keys file, as explained in Step 5 for the root
user above. Refer to Figure 11 for the contents of authorized_keys.

Figure 11. User authorized_keys file

Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

5 di 6 08/03/2008 22.25

Finally, copy the authorized_keys file into the /home/myuser/.ssh folder on all the machines and
set the permission as 600, as shown in Figure 12, using the $chmod 600
/home/myuser/.ssh/authorized_keys command. This sets the access permission to 600, which
means that only the owner or myuser has permission to read and write this file. No one else can modify it.

Figure 12. Permission on authorized_keys file

Test your environment by executing the $ssh node3.my.com date command. Doing so should return
the date output of node3.my.com.

Conclusion: Saving time, providing flexibility

In this article, you learned how to configure SSH in your environment so that you can perform activities more
easily and quickly. This not only helps in saving time, but it also gives you flexibility to perform activities serially
on more machines automatically. Part 2 concentrates on configuring rsh, another way of executing serial
commands in your environment when security is not of prime importance.

Resources

Learn
"Run commands sequentially across a cluster from a UNIX server, Part 2" (developerWorks, August 2006):
Learn how to configure remote shell (rsh) on IBM System p and System x computers.

OpenSSH: Visit this site to learn more about OpenSSH.

Configuring OpenSSH: Learn how to confirm OpenSSH for public key authentication.

HOWTOs on Linux: Visit this site to learn more about Linux, or solve an issue.

IBM Systems: Want more? The developerWorks IBM Systems zone hosts hundreds of informative articles
and introductory, intermediate, and advanced tutorials.

Run commands sequentially across a cluster from a UNIX server, Part ... http://www.ibm.com/developerworks/eserver/library/es-ssh/?ca=dgr-...

6 di 6 08/03/2008 22.25

developerWorks technical events and webcasts: Stay current with developerWorks technical events and
webcasts.

Get products and technologies
IBM trial software: Build your next development project with software for download directly from
developerWorks.

Discuss
Participate in the IBM Systems forums, developerWorks blogs, and get involved in the developerWorks
community.

About the author

Harish has been with IBM since 1998 and has 14 years of experience. During his last eight years with
IBM, he has spent five years at the India Research Lab and one year at the IBM T.J.Watson Research
Center. Harish has been leading the Linux Center of Competency in Bangalore, India for the past two
years. You can contact him at hchauhan@in.ibm.com.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others. Other company, product, or
service names may be trademarks or service marks of others.

